Examination 2

- 1. State the following theorems: Liouville's theorem about entire functions, Morera's theorem, and the Casorati–Weierstrass theorem.
- 2. Give an example of an open set, an analytic function f defined on the set, and two paths γ_1 and γ_2 in the set having the same endpoints [in other words, $\gamma_1(0) = \gamma_2(0)$ and $\gamma_1(1) = \gamma_2(1)$] such that $\int_{\gamma_1} f(z) dz \neq \int_{\gamma_2} f(z) dz$.
- 3. Determine (with proof) the maximum value and the minimum value of the real-valued expression $|z^2 1|$ when $|z| \le 1$.
- 4. Suppose f is analytic in $\{z \in \mathbb{C} : 0 < |z| < 1\}$, the punctured unit disk. If f has a removable singularity at the origin, then what can you say about the singularity of 1/f, the reciprocal function?
- 5. Does there exist an entire function f such that $f(n) = n \cdot (-1)^n$ for every natural number n?
- 6. Determine the residue of the rational function $\frac{1}{(z^2-1)^5}$ at the point where z=1.