
Math 618 ∂-equation March 29, 1999

Exercise on the ∂-equation

The goal of this exercise is to understand how to solve the ∂-equation on
planar domains.

You know from studying linear algebra and ordinary differential equations
that homogeneous equations (ones with zero right-hand side) and inhomoge-
neous equations (ones with non-zero right-hand side) are intimately related.
The same principle applies in the context of holomorphic functions. The
fundamental homogeneous equation is ∂f/∂z̄ = 0, the short-hand form of
the Cauchy-Riemann equations. It is natural to consider the inhomogeneous
Cauchy-Riemann equation

∂f

∂z̄
= g, (1)

where g is given and f is to be found. This is known as the ∂-equation.
A typical application of the solvability of this equation is the construction

of holomorphic functions with specified properties. First one constructs a
class C1 function (not holomorphic) having the desired properties. Then
one subtracts a correction function whose z̄ derivative is prescribed to make
the new function holomorphic. Of course, one has to make sure that the
correction does not destroy the special properties that were attained in the
first step.

Our goal here is to see how to solve the ∂-equation via an integral formula.
The claim is that if g has a continuous derivative in the closure of a bounded
region G in the complex plane, then

f(z) := − 1

π

∫∫
G

g(w)

w − z du dv, z ∈ G, w = u+ iv, (2)

solves the equation ∂f/∂z̄ = g in G.
To verify that (2) does solve the ∂-equation (1), one can apply the Cauchy

integral formula with remainder for non-holomorphic functions. That for-
mula says that if g is a class C1 function on the closure of a bounded domain Ω
in C with class C1 boundary, then

g(z) =
1

2πi

∫
∂Ω

g(w)

w − z dw −
1

π

∫∫
Ω

∂g/∂w̄

w − z du dv, z ∈ Ω. (3)

For a proof of (3) using Green’s theorem, see pages 486–487 in Appendix A.
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In this exercise, we will assume formula (3) and use it to show that the
integral formula (2) does solve the ∂-equation (1).

1. Consider the special case that g has compact support in G. (This means
that g is equal to 0 near the boundary of G; more formally, the closure
of the set of points where g is different from 0 is a compact set in G.)
Deduce from (3) that

g(z) = − 1

π

∫∫
G

∂g/∂w̄

w − z du dv, z ∈ G.

2. By changing variables in (2) and differentiating under the integral sign,
show that

∂f

∂z̄
= − 1

π

∫∫
G

∂g/∂w̄

w − z du dv, z ∈ G,

and deduce that (2) does solve the ∂-equation (1) when g has compact
support in G.

The result for arbitrary g follows from the case of compactly supported g
by the following trick. Fix a point z0 in G, and let ϕ be a differentiable bump
function that is equal to 1 in a neighborhood of z0 and equal to 0 outside a
larger neighborhood of z0. Rewrite (2) as

f(z) = − 1

π

∫∫
G

g(w)ϕ(w)

w − z du dv − 1

π

∫∫
G

g(w)(1− ϕ(w))

w − z du dv. (4)

3. The z̄ derivative of the second integral in (4) equals 0 for z in a neigh-
borhood of z0 because one can differentiate under the integral sign.
(Why does the same reasoning not apply to the first integral?)

4. By the already proved case of compact support, the first integral in (4)
has z̄ derivative equal to g(z) for z near z0. Consequently, (2) solves
the ∂-equation (1) whether or not g has compact support.
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