
Math 618 Take-home Examination February 28, 2013

Instructions Solve any four of the following six problems. Your solutions are
due at the beginning of class on Thursday, March 7.

You may consult your notes from class and the textbook (including sections
that we have not officially discussed) but not other sources. In particular, you may
not ask another person for help solving the problems. You may, of course, ask me
for clarification about the statements of the problems. You may cite and use results
stated in the textbook or in class.

1. Weierstrass got the idea for his theory of convergence-producing factors for
infinite products by studying the concrete example of the gamma function. In a
paper written while he was teaching in a high school,1 Weierstrass introduced the
notation Fc (for “factorial”) as follows:2
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where the expression
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)

with the
principal branch of the logarithm. Page 209 of the textbook states without proof the
following infinite-product representation for the reciprocal of the gamma function:
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Here is your task:
(a) show that the infinite product in (1) converges uniformly on each compact

subset of ℂ; and
(b) show that the infinite products in (1) and (2) agree; that is, Fc(z) = 1∕Γ(z) for

every complex number z.
1Über die Theorie der analytischen Facultäten, Journal für die reine und angewandte Mathe-

matik [Crelle’s Journal] 51 (1856) 1–60; the byline lists Weierstrass as “Oberlehrer am Gymn. zu
Braunsberg” [head teacher in the Braunsberg secondary school].

2Modulo change of notation: Weierstrass actually used the variable u instead of z and the sum-
mation index � instead of n.

Page 1 of 4 Dr. Boas



Math 618 Take-home Examination February 28, 2013

2. Suppose U is a bounded, connected, simply connected, nonvoid open subset
of ℂ, and let z0 be a point in U . Let  denote the family of holomorphic functions
on U such that each f in the family has the following properties:

• the image f (U ) is a subset of {w ∈ ℂ ∶ |w| < 1 } (the unit disk);
• f (z0) = 0;
• f ′(z0) is a positive real number.

Show that
(a) there is an extremal function in  for which the value f ′(z0) is maximal; and
(b) this extremal function is equal to the Riemann mapping function.

Remark The set-up is reminiscent of the proof of the Riemannmapping theorem
given in the textbook. That proof implicitly shows that if the family  is further
restricted to contain only functions that additionally are injective (univalent), then
the extremal function is a biholomorphism from U to the unit disk.

In this problem, however, no a priori assumption is made that the functions in
the family  are injective. The surprise is that the extremal function nonetheless
turns out to be both injective and surjective. The main issue is to figure out what
magic principle forces the extremal function to be injective.

Suggestion To get started, you might consider the special case that U itself is
the unit disk, and z0 = 0.

3. Suppose {nk}∞k=1 is an increasing sequence of positive integers such that the
infinite series∑∞

k=1 1∕nk diverges. Prove that if f is a bounded holomorphic func-
tion on { z ∈ ℂ ∶ Re(z) > 0 } (the right-hand half-plane) having a zero at each nk,then f must be identically equal to zero.

Suggestion Show that the map sending z to z − 1
z + 1

is a biholomorphic map from
the right-hand half-plane to the unit disk. You know something from a homework
exercise about zeroes of bounded holomorphic functions on the unit disk.
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4. According to Montel’s theorem, a family of holomorphic functions on a (non-
void) connected open subset of ℂ is a normal family (in the sense that every
sequence of functions in the family admits a subsequence converging uniformly
on compact sets to a holomorphic function) if and only if the family is locally
bounded (meaning that for every compact subsetK there is a constant C such that
|f (z)| ≤ C for every z in K and every f in the family).

Your task is to prove Marty’s theorem, which provides a necessary and suffi-
cient condition for a family of holomorphic functions on a (nonvoid) connected
open subset of ℂ to be a normal family in the extended sense that every sequence
of functions in the family admits either a subsequence that converges uniformly
on compact sets to a holomorphic function or a subsequence that tends uniformly
on compact sets to the constant ∞. Marty’s criterion is that for every compact
subset K there is a constant C such that |f ′(z)|

1 + |f (z)|2
≤ C for every z in K and

every f in the family.
The expression |f ′(z)|

1 + |f (z)|2
, sometimes called the spherical derivative of f ,

has the useful property that this expression is unchanged when f is replaced by
the reciprocal function 1∕f . Marty’s criterion for normality in the extended sense
can be rephrased as local boundedness of the family of spherical derivatives.

Suggestions If the family is normal, but Marty’s criterion is violated, then there
must exist a compact set and a sequence of functions such that . . . ; pass to a con-
vergent subsequence and deduce a contradiction.

In the converse direction, the key issue in deducing normality from Marty’s
criterion is to prove some uniform control: you need to know that if |f (z)| is small
(respectively large) at a point, then |f (z)| remains small (respectively large) in a
neighborhood of the point (the neighborhood being independent of the function).
One way to get this control is to compute )

)r
arctan |f (z0+ rei�)| by the chain rule

to deduce that
|

|

arctan |f (z0 + Rei�)| − arctan |f (z0)||| ≤ ∫

R

0

|f ′(z0 + rei�)|
1 + |f (z0 + rei�)|2

dr.

The mean-value theorem from real calculus now tells you something useful.
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5. Does there exist a holomorphic function f on { z ∈ ℂ ∶ |z| < 1 } (the unit
disk) with the property that for every sequence {zn}∞n=1 of points in the unit disk forwhich |zn| → 1, the corresponding image sequence {f (zn)}∞n=1 is an unbounded
subset of ℂ?

Either show how to construct such a function or prove that no such function
can exist.

6. Apply Montel’s fundamental normality criterion to prove the “little” theorem
of Picard: namely, the image of a nonconstant entire function cannot omit two
distinct complex values.

Suggestions Recall Montel’s criterion: a sufficient condition for a family of
holomorphic functions on a connected open set U (which could be all of ℂ) to be
a normal family in the extended sense is that each function in the family maps U
to a subset of ℂ ⧵ {0, 1}.

Observe that the specific choice of 0 and 1 as the two omitted values is merely
a convenient normalization. If instead f (z) never takes the two values a and b,
then the function f (z) − a

f (z) − b
never takes the values 0 and 1.

To prove Picard’s little theorem,3 suppose that f is an entire function whose
image does omit the values 0 and 1, and consider the sequence of entire func-
tions {fn}∞n=1, where fn(z) = f (nz). After invoking Montel’s criterion, can you
make use of Liouville’s theorem?

3Picard’s “great” theorem, which is a little harder than the little theorem, says that in every
punctured neighborhood of an essential singularity, a holomorphic function assumes every complex
value—with one possible exception—infinitely often. This more sophisticated theorem too can be
proved by applyingMontel’s fundamental normality criterion. Picard’s great theorem subsumes the
little theorem, for an entire function either has an essential singularity at infinity or is a polynomial
(and a nonconstant polynomial assumes every complex value). Thus one can strengthen the little
theorem to say that a nonpolynomial entire function takes every complex value infinitely often, with
one possible exception. The exceptional value might be taken not at all or finitely many times.
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