
Math 618 Take-home Examination February 28, 2013

Instructions Solve any four of the following six problems. Your solutions are
due at the beginning of class on Thursday, March 7.

You may consult your notes from class and the textbook (including sections
that we have not officially discussed) but not other sources. In particular, you may
not ask another person for help solving the problems. You may, of course, ask me
for clarification about the statements of the problems. You may cite and use results
stated in the textbook or in class.

1. Weierstrass got the idea for his theory of convergence-producing factors for
infinite products by studying the concrete example of the gamma function. In a
paper written while he was teaching in a high school,1 Weierstrass introduced the
notation Fc (for “factorial”) as follows:2

Fc(z) = z
∞
∏

n=1

(

n
n + 1

)z(

1 + z
n

)

, (1)

where the expression
(

n
n + 1

)z

is to be interpreted as exp
(

z log n
n + 1

)

with the
principal branch of the logarithm. Page 209 of the textbook states without proof the
following infinite-product representation for the reciprocal of the gamma function:

1
Γ(z)

= ze
z
∞
∏

n=1

(

1 + z
n

)

e−z∕n, (2)

where 
 is Euler’s constant, that is,


 = lim
n→∞

(

1 + 1
2
+ 1
3
+⋯ + 1

n
− log n

)

.

Here is your task:
(a) show that the infinite product in (1) converges uniformly on each compact

subset of ℂ; and
1Über die Theorie der analytischen Facultäten, Journal für die reine und angewandte Mathe-

matik [Crelle’s Journal] 51 (1856) 1–60; the byline lists Weierstrass as “Oberlehrer am Gymn. zu
Braunsberg” [head teacher in the Braunsberg secondary school].

2Modulo change of notation: Weierstrass actually used the variable u instead of z and the sum-
mation index � instead of n.
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(b) show that the infinite products in (1) and (2) agree; that is, Fc(z) = 1∕Γ(z) for
every complex number z.

Solution. To check the normal convergence of (1) in the complex plane, it suffices
to verify uniform convergence on an arbitrary closed disk. Accordingly, fix an
arbitrary integer N larger than 2, and consider the disk where |z| ≤ N∕2. The
goal is to prove uniform convergence on this disk of the infinite series

∞
∑

n=N

[

z log
(

n
n + 1

)

+ log
(

1 + z
n

)

]

,

or equivalently, of the series
∞
∑

n=N

{[

z
n
− z log

(

1 + 1
n

)

]

−

[

z
n
− log

(

1 + z
n

)

]}

.

Exercise 31.2 in the textbook says that | log(1 +w) −w| ≤ |w|2 when |w| ≤ 1∕2.
Since |z∕n| ≤ 1∕2 when z is in the indicated disk and n ≥ N , the exercise implies
that the modulus of the general term of the infinite series is bounded above by

|z| ⋅ 1
n2
+
|

|

|

|

z
n
|

|

|

|

2

, hence by 2N2

n2
.

Thus the infinite series converges absolutely and uniformly on an arbitrary disk by
comparison with the convergent series∑n n−2.To verify the equivalence of (1) and (2), observe that

n
∏

k=1

(

k
k + 1

)z(

1 + z
k

)

=
n
∏

k=1

(

1 + z
k

)

exp
(

−z
k

)

exp
(

z
k
+ z log k

k + 1

)

=
{ n
∏

k=1

(

1 + z
k

)

exp
(

−z
k

)}

exp
{

z
n
∑

k=1

(

1
k
+ log k

k + 1

)}

.

Now
n
∑

k=1
log k

k + 1
telescopes to − log(n + 1), and

lim
n→∞

[( n
∑

k=1

1
k

)

− log(n + 1)
]

= lim
n→∞

[(

1 + 1
2
+ 1
3
+⋯ + 1

n
− log n

)

+ log n
n + 1

]

= 
 + 0.
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Accordingly,
∞
∏

n=1

(

n
n + 1

)z(

1 + z
n

)

= e
z
∞
∏

n=1

(

1 + z
n

)

e−z∕n,

as claimed.

2. Suppose U is a bounded, connected, simply connected, nonvoid open subset
of ℂ, and let z0 be a point in U . Let  denote the family of holomorphic functions
on U such that each f in the family has the following properties:

• the image f (U ) is a subset of {w ∈ ℂ ∶ |w| < 1 } (the unit disk);
• f (z0) = 0;
• f ′(z0) is a positive real number.

Show that
(a) there is an extremal function in  for which the value f ′(z0) is maximal; and
(b) this extremal function is equal to the Riemann mapping function.

Remark The set-up is reminiscent of the proof of the Riemannmapping theorem
given in the textbook. That proof implicitly shows that if the family  is further
restricted to contain only functions that additionally are injective (univalent), then
the extremal function is a biholomorphism from U to the unit disk.

In this problem, however, no a priori assumption is made that the functions in
the family  are injective. The surprise is that the extremal function nonetheless
turns out to be both injective and surjective. The main issue is to figure out what
magic principle forces the extremal function to be injective.

Suggestion To get started, you might consider the special case that U itself is
the unit disk, and z0 = 0.
Solution. The family  contains, in particular, the Riemann mapping function,
so  is not void. Being bounded, the family  is normal. Take a sequence of
functions in  whose derivatives at z0 are positive and approach the supremum
of all such values. Normality guarantees the existence of a subsequence that con-
verges normally to a holomorphic function, which necessarily still maps z0 to 0.
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Moreover, the corresponding subsequence of derivatives converges normally too.
Consequently, the limiting function has a derivative at z0 that attains the maximal
value. The image of the limiting function a priori is a subset of the closed unit disk,
but by the open-mapping principle the image actually is a subset of the open unit
disk; the limiting function cannot be a constant, for the derivative at z0 is not zero.In summary, there is an extremal function, and this function lies in the family  .

Let f denote an extremal function (not yet known to be unique), and let R de-
note the Riemann mapping function that maps U biholomorphically to the unit
disk, taking z0 to 0 and having positive derivative at z0 (the derivative can be made
real and positive by composing with a suitable rotation). The composite function
f◦R−1 then maps the unit disk into itself, fixing the origin. Cauchy’s estimate for
the first derivative implies that |(f◦R−1)′(0)| ≤ 1. The chain rule implies that
(f◦R−1)′(0) = f ′(z0)∕R′(z0), so f ′(z0) ≤ R′(z0). But f ′(z0) ≥ R′(z0) by the
extremal property of f , so actually f ′(z0) = R′(z0). In other words, the compos-
ite function f◦R−1 maps the unit disk to itself, fixes the origin, and has derivative
equal to 1 at the origin. The desired conclusion that f = R is the content of the
following lemma.
Lemma. SupposeF is a holomorphic function in the unit disk such that |F (z)| < 1
when |z| < 1 and F (0) = 0 and F ′(0) = 1. Then F is the identity function,
F (z) = z.

First proof. Define a function g in the unit disk as follows:

g(z) =

{

F (z)∕z, if z ≠ 0,
1, if z = 0.

Since g(0) = 1 = F ′(0) = limz→0 F (z)∕z, the function g is holomorphic.
If 0 < r < 1 and |z| = r, then |g(z)| = |F (z)|∕r < 1∕r. Therefore the

maximum of |g| on the disk of radius r is at most 1∕r. Taking the limit as r → 1
shows that the supremum of |g| on the unit disk is at most 1. But g(0) = 1,
so the maximum principle implies that g is a constant function: namely, g(z) is
identically equal to 1. Thus F (z) is identically equal to z.

This proof is essentially the proof of the Schwarz lemma, and many authors
fold the conclusion into the statement of the Schwarz lemma.
Second proof. The Maclaurin series of F (z) begins z +⋯. The claim is that the
terms in ⋯ all are identically equal to 0. Suppose to the contrary that there is a
natural number k and a nonzero constant ak such thatF (z) = z+akzk+⋯. Observe
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that (F◦F )(z) = z+ 2akzk +⋯, and more generally, the n-fold composition of F
with itself has series expansion z + nakzk +⋯.

The iterates of F all have image contained in the unit disk, so this sequence of
functions is normal. Consequently, the sequence of kth derivatives of the iterates
is normal, hence locally bounded. But the value at the origin of the kth derivative
of the nth iterate equals k! nak, which evidently is unbounded when n → ∞. The
contradiction shows that the series expansion of F (z) must reduce to z.

This argument works more generally to prove a proposition of Cartan: If a
holomorphic mapping of a bounded subdomain of ℂN into itself looks like the
identity mapping to first order at one point, then the mapping is the identity.

3. Suppose {nk}∞k=1 is an increasing sequence of positive integers such that the
infinite series∑∞

k=1 1∕nk diverges. Prove that if f is a bounded holomorphic func-
tion on { z ∈ ℂ ∶ Re(z) > 0 } (the right-hand half-plane) having a zero at each nk,then f must be identically equal to zero.

Suggestion Show that the map sending z to z − 1
z + 1

is a biholomorphic map from
the right-hand half-plane to the unit disk. You know something from a homework
exercise about zeroes of bounded holomorphic functions on the unit disk.
Solution. Evidently the rational function z − 1

z + 1
is holomorphic when z ≠ −1 (and

in particular, in the right-hand half-plane). Rewriting the fraction as 1 − 2
z + 1shows that the function is injective (since translation, dilation, and inversion are).

Since
|

|

|

|

z − 1
z + 1

|

|

|

|

2

= 1 −
4Re(z)
|z + 1|2

,

the image of the right-hand half-plane lines inside the unit disk. If w = z − 1
z + 1

,
then z = 1 +w

1 −w
, and

Re
(

1 +w
1 −w

)

=
1 − |w|2

|1 −w|2
,

so the inverse function maps the open unit disk into the right-hand half-plane. In
summary, the function sending z to z − 1

z + 1
is indeed a biholomorphicmapping from

the right-hand half-plane onto the unit disk.
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Composing f with the inverse mapping creates a bounded holomorphic func-
tion g on the unit disk having a zero at each point 1 − 2

nk + 1
. Since the series

∑

k
1
nk

diverges, so does∑k
2

nk + 1
. Consequently, what needs to be shown is that

if g is a bounded holomorphic function on the unit disk having zeroes at some
sequence {ak}∞k=1 of points in the interval (0, 1) of the positive real axis such that
∑

k(1 − ak) diverges, then g is identically equal to zero.Seeking a contradiction, suppose that g is not identically equal to 0. Notice
that if g(0) = 0, then there is some natural number s such that g(z)∕zs has a
finite, nonzero limit at the origin. This new function g(z)∕zs still has a zero at
each point ak. Moreover, the function g(z)∕zs is bounded by the same value that
bounds the original function g. (Apply themaximum principle on a disk of radius r
less than 1 and take the limit as r→ 1.) Accordingly, there is no loss of generality
in supposing from the start that g(0) ≠ 0. Indeed, one may as well assume that
g(0) = 1 (after multiplying g by a suitable constant).

Method 1: Blaschke products For each natural number n, define a function gnin the unit disk as follows:
gn(z) =

g(z)
∏n

k=1
ak − z
1 − akz

.

Remove the removable singularities in this expression. LetM be an upper bound
for the modulus of g on the unit disk. Because the Blaschke product has modulus
equal to 1 on the boundary of the disk, applying the maximum principle on a disk
of radius r less than 1 and taking the limit as r→ 1 shows that each gn has modulus
bounded above byM on the unit disk. In particular, |gn(0)| ≤M , or

1
∏n

k=1 ak
≤M, or

n
∏

k=1
ak ≥

1
M
.

Since the partial product∏n
k=1 ak decreases monotonically as n increases and also

is bounded below by 1∕M , the infinite product∏∞
k=1 ak converges (and to a valueno smaller than 1∕M). Since ak = 1 − (1 − ak), the general theory of infinite

products implies that∑∞
k=1(1 − ak) converges.This conclusion contradicts the hypothesis. Consequently, the supposition that

g is not identically equal to 0 is untenable.
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Method 2: Jensen’s theorem Some students discovered how to finish the proof
by invoking Jensen’s theorem from §32B (which we have not discussed in class).
The proof of Jensen’s theorem in the textbook uses contour integration, but another
proof is based on Blaschke products (as indicated in Exercise 32.1), so Method 2
is not essentially different in spirit from Method 1.

If 0 < r < 1, and g is not identically equal to 0, then g has finitely many zeroes
inside the disk of radius r, say b1, . . . , bN (with repetition according tomultiplicity).
Bump the value r slightly, if necessary, to ensure that no zero of g has modulus
exactly equal to r. Jensen’s formula from page 210 says that

1
2� ∫

2�

0
log |g(rei�)| d� − log |g(0)| =

N
∑

k=1
log r

|bk|
.

Under the normalization that g(0) = 1, and withM again being an upper bound
for the modulus of g on the unit disk, the formula implies the following:

N
∑

k=1
log r

|bk|
≤ logM.

Each summand on the left-hand side is positive, so when r increases, the additional
terms from extra zeroes can be discarded, and the inequality remains in force.
Consequently, taking the limit as r→ 1 implies that

N
∑

k=1
log 1

|bk|
≤ logM

for each finite number of zeroes of g. The sequence {an}∞n=1 might not be a com-
plete list of the zeroes of g, but each an is eventually among the b’s, so

∞
∑

n=1
log 1

an
≤ logM.

Since
lim
a→1−

log(1∕a)
1 − a

= 1,

the limit comparison test for infinite series implies that∑∞
n=1(1 − an) converges.As in Method 1, this contradiction establishes the required result.
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4. According to Montel’s theorem, a family of holomorphic functions on a (non-
void) connected open subset of ℂ is a normal family (in the sense that every
sequence of functions in the family admits a subsequence converging uniformly
on compact sets to a holomorphic function) if and only if the family is locally
bounded (meaning that for every compact subsetK there is a constant C such that
|f (z)| ≤ C for every z in K and every f in the family).

Your task is to prove Marty’s theorem, which provides a necessary and suffi-
cient condition for a family of holomorphic functions on a (nonvoid) connected
open subset of ℂ to be a normal family in the extended sense that every sequence
of functions in the family admits either a subsequence that converges uniformly
on compact sets to a holomorphic function or a subsequence that tends uniformly
on compact sets to the constant ∞. Marty’s criterion is that for every compact
subset K there is a constant C such that |f ′(z)|

1 + |f (z)|2
≤ C for every z in K and

every f in the family.
The expression |f ′(z)|

1 + |f (z)|2
, sometimes called the spherical derivative of f ,

has the useful property that this expression is unchanged when f is replaced by
the reciprocal function 1∕f . Marty’s criterion for normality in the extended sense
can be rephrased as local boundedness of the family of spherical derivatives.

Suggestions If the family is normal, but Marty’s criterion is violated, then there
must exist a compact set and a sequence of functions such that . . . ; pass to a con-
vergent subsequence and deduce a contradiction.

In the converse direction, the key issue in deducing normality from Marty’s
criterion is to prove some uniform control: you need to know that if |f (z)| is small
(respectively large) at a point, then |f (z)| remains small (respectively large) in a
neighborhood of the point (the neighborhood being independent of the function).
One way to get this control is to compute )

)r
arctan |f (z0+ rei�)| by the chain rule

to deduce that
|

|

|

arctan |f (z0 + Rei�)| − arctan |f (z0)|
|

|

|

≤ ∫

R

0

|f ′(z0 + rei�)|
1 + |f (z0 + rei�)|2

dr.

The mean-value theorem from real calculus now tells you something useful.
Solution. Suppose Marty’s criterion is violated. Then there is a compact set K , a
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sequence {zn}∞n=1 in K , and a sequence {fn}∞n=1 in the family such that
|f ′n(zn)|

1 + |fn(zn)|2
> n.

The claim is that the sequence {fn}∞n=1 is not normal in the extended sense, and
therefore the original family is not normal in the extended sense.

If the sequence {fn}∞n=1 had a subsequence {fnk} converging uniformly on
compact sets to a holomorphic function, then both the sequence {fnk} and the
sequence {f ′nk} of derivatives would be locally bounded. Thus there would exist aconstantM such that maxz∈K |f ′nk(z)| < M for every k. In particular,

|f ′nk(znk)|

1 + |fnk(znk)|
2
≤ |f ′nk(znk)| < M, withM independent of k,

which contradicts the construction of the sequence {fn}∞n=1. On the other hand,
if the sequence {fn}∞n=1 had a subsequence {fnk} tending locally uniformly to∞,
then fnk would be zero-free in a neighborhood of K for large enough k, and 1∕fnkwould tend to 0 uniformly in a neighborhood of K . Hence the ordinary derivative
of the function 1∕fnk would tend to 0 uniformly on K , and so would the spherical
derivative of 1∕fnk . But the spherical derivative of of 1∕fnk equals the sphericalderivative of fnk , so again the defining property of the sequence {fn}∞n=1 wouldbe contradicted. In other words, if Marty’s criterion is violated, then the family
cannot be normal in the extended sense.

Conversely, suppose that Marty’s criterion does hold. The goal is to show that
the family is normal in the extended sense.

Method 1: Extend the Arzelà–Ascoli theorem The notion of equicontinuity
makes sense in metric spaces (or even more generally). Inspection of the proof
of the Arzelà–Ascoli theorem reveals that a family  of functions from a planar
domain into a metric space (X, d) is normal (has compact closure with respect to
the topology of uniform convergence on compact sets) if and only if for each point z
in the domain, the family is equicontinuous at z and the set { f (z) ∶ f ∈  } has
compact closure in X.

In particular, the metric space (X, d) can be the extended complex numbers
provided with the spherical metric. This metric space is compact, so the second
hypothesis in the Arzelà–Ascoli theorem holds trivially. Thus a family of holo-
morphic functions viewed as maps into the extended complex numbers is normal
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(with respect to the spherical metric) if and only if the family is equicontinuous
with respect to the spherical metric.

Being a normal family with respect to the spherical metric is precisely the
notion of normality in the extended sense. Thus the problem reduces to showing
that Marty’s condition implies equicontinuity with respect to the spherical metric.

In Math 617 last semester, we worked out that the spherical distance between
complex numbers z1 and z2 equals

|z1 − z2|
√

1 + |z1|2
√

1 + |z2|2

(up to a scale factor that depends on the particular model for stereographic projec-
tion). The infinitesimal interpretation of this expression is that the differential of
arclength for the spherical distance is

|

|

dz|
|

1 +|z|2
,

where|
|

dz|
|

denotes the ordinary arclength differential.
Fix a point z1, a closed disk centered at z1 and contained in the domain of the

functions, and a point z2 in this disk. Let 
 denote the straight-line path joining
z1 to z2. Consider an arbitrary function f in the family. The image path f (
)
joins f (z1) to f (z2) but is not necessarily a geodesic (a path of minimal length),
so the spherical length of the path f (
) is an upper bound for the spherical distance
between f (z1) and f (z2). The spherical length of f (
) is

∫f (
)

|

|

dw|
|

1 +|w|2
, or ∫


|

|

f ′(z)|
|

1 +|
|

f (z)|
|

2
|

|

dz|
|

.

ByMarty’s criterion, there is a positive constant C (independent of f ) that bounds
the integrand of the second integral. Consequently, the spherical distance between
f (z1) and f (z2) does not exceed ∫
 C |

|

dz|
|

, or C|z1 − z2|. So if |z1 − z2| < "∕C ,
then the spherical distance between f (z1) and f (z2) is less than ". The constantsare independent of f , so the family is equicontinuous at the arbitrary point z1.Thus Marty’s condition implies equicontinuity with respect to the spherical
metric, as claimed.

Method 2: Local stability estimates Normality is a local property. Fix an arbi-
trary point z0 in the domain. It suffices to show that there is a neighborhood of z0
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such that for every sequence {fn}∞n=1 of functions in the family, either there is sub-
sequence that is bounded in the neighborhood, or there is a subsequence for which
the reciprocal functions are bounded in the neighborhood. For then there is either
a subsequence converging uniformly in a slightly smaller neighborhood, or there
is a subsequence for which the reciprocals converge uniformly in a slightly smaller
neighborhood. In the second case, Hurwitz’s theorem implies that the limit func-
tion either is nowhere zero in the neighborhood (and then the original subsequence
converges to a holomorphic function) or is identically zero in the neighborhood
(and then the original subsequence converges to∞).

If the closed disk of radius R0 centered at z0 is contained in the domain of the
functions, then Marty’s criterion supplies a positive constant C such that

|

|

f ′(z)|
|

1 +|
|

f (z)|
|

2
≤ C when|

|

z − z0|| ≤ R0 and f is in the family.

Observe that

)
)r
arctan||

|

f (z0 + rei�)
|

|

|

= 1
1 +|

|

f (z0 + rei�)||
2
⋅
Re

[

ei�f ′(z0 + rei�)f (z0 + rei�)
]

|

|

f (z0 + rei�)||
,

so
|

|

|

|

)
)r
arctan||

|

f (z0 + rei�)
|

|

|

|

|

|

|

≤
|

|

f ′(z0 + rei�)||
1 +|

|

f (z0 + rei�)||
2
≤ C

when r ≤ R0. Choose a positive radius R1 less than R0 and small enough that
R1C < �∕12. Integrating the radial derivative shows that if |z − z0| ≤ R1, then

|

|

|

arctan|
|

f (z)|
|

− arctan|
|

f (z0)||
|

|

|

< �∕12. (3)
Two positive real numbers whose arctangents are close need not themselves be
close (for instance, both arctan 100 and arctan 500 are close to �∕2), but either the
numbers or their reciprocals must be close. Inequality (3) provides a quantitative
estimate, as follows.

If |f (z0)| ≤ 1, then arctan |f (z0)| ≤ �∕4, so inequality (3) implies that
arctan |f (z)| < �∕3, whence |f (z)| <√

3. On the other hand, if |f (z0)| > 1, then
arctan |f (z0)| > �∕4, so inequality (3) implies that arctan |f (z)| > �∕6, whence
|f (z)| > 1∕

√

3. Thus Marty’s criterion guarantees that the values of functions in
the family are uniformly stable on small disks.
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Now if {fn}∞n=1 is a sequence of functions in the family, then either there are
infinitely many values of n for which |fn(z0)| ≤ 1, or there are infinitely many
values of n for which |fn(z0)| > 1. Pass to the corresponding subsequence. In thefirst case, the moduli of the functions in the subsequence are uniformly bounded
above by √

3 on the disk centered at z0 of radius R1. In the second case, the
moduli of the functions in the subsequence are uniformly bounded below by 1∕√3.
Thus the required local estimates hold that guarantee normality of the family in the
extended sense.

5. Does there exist a holomorphic function f on { z ∈ ℂ ∶ |z| < 1 } (the unit
disk) with the property that for every sequence {zn}∞n=1 of points in the unit disk forwhich |zn| → 1, the corresponding image sequence {f (zn)}∞n=1 is an unbounded
subset of ℂ?

Either show how to construct such a function or prove that no such function
can exist.
Solution. Seeking a contradiction, suppose that such a function f exists.

The first observation is that f has only finitely many zeroes. Indeed, if there
were an infinite sequence of zeroes, then f would trivially be bounded on that
sequence, so the unboundedness property of f would imply that the sequence of
zeroes does not accumulate at the boundary. By the Bolzano–Weierstrass property,
the sequence of zeroes would accumulate in the interior, and then f would be
identically equal to zero (by the coincidence principle).

Since f has finitely many zeroes, there is a polynomial p such that f∕p is
holomorphic and zero-free in the disk. The function f∕p inherits the property of
being unbounded on every sequence that tends to the boundary. Therefore there is
no loss of generality in supposing from the start that f has no zeroes.

After this normalization, the function 1∕f is holomorphic in the disk. Fix a
positive number ". The claim is that there exists a positive radius r less than 1 such
that |1∕f (z)| ≤ " when r < |z| < 1. For if no such r exists, then there would be
a sequence {zn}∞n=1 such that |1∕f (zn)| > " and |zn| → 1, which would contradict
the unboundedness of the sequence {f (zn)}. Knowing that |1∕f (z)| ≤ " when
r < |z| < 1 implies—by the maximum principle—that |1∕f (z)| ≤ " for every z in
the unit disk. Since " is arbitrary, it follows that 1∕f (z) = 0, which is impossible.

The contradiction shows that no function f of the indicated form can exist.
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6. Apply Montel’s fundamental normality criterion to prove the “little” theorem
of Picard: namely, the image of a nonconstant entire function cannot omit two
distinct complex values.

Suggestions Recall Montel’s criterion: a sufficient condition for a family of
holomorphic functions on a connected open set U (which could be all of ℂ) to be
a normal family in the extended sense is that each function in the family maps U
to a subset of ℂ ⧵ {0, 1}.

Observe that the specific choice of 0 and 1 as the two omitted values is merely
a convenient normalization. If instead f (z) never takes the two values a and b,
then the function f (z) − a

f (z) − b
never takes the values 0 and 1.

To prove Picard’s little theorem,3 suppose that f is an entire function whose
image does omit the values 0 and 1, and consider the sequence of entire func-
tions {fn}∞n=1, where fn(z) = f (nz). After invoking Montel’s criterion, can you
make use of Liouville’s theorem?
Solution. Since the map that sends z to nz is a bijection of ℂ, the range of fn isidentical to the range of f . Accordingly, Montel’s theorem implies that the family
{fn} is normal in the extended sense. Since fn(0) = f (0) for every n, the family is
bounded at the origin, so there cannot be a subsequence tending to∞. Therefore
the family is normal in the ordinary sense. In particular, the family is bounded on
the closed unit disk. But the range of the restriction of fn to the unit disk is identicalto the range of the restriction of f to the disk of radius n. Thus the range of the
restriction of f to the disk of radius n is bounded with a bound independent of n;
that is, the function f is bounded on ℂ. By Liouville’s theorem, the function f is
constant. Thus every entire function whose range omits two values reduces to a
constant function.

3Picard’s “great” theorem, which is a little harder than the little theorem, says that in every
punctured neighborhood of an essential singularity, a holomorphic function assumes every complex
value—with one possible exception—infinitely often. This more sophisticated theorem too can be
proved by applyingMontel’s fundamental normality criterion. Picard’s great theorem subsumes the
little theorem, for an entire function either has an essential singularity at infinity or is a polynomial
(and a nonconstant polynomial assumes every complex value). Thus one can strengthen the little
theorem to say that a nonpolynomial entire function takes every complex value infinitely often, with
one possible exception. The exceptional value might be taken not at all or finitely many times.
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