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Abstract

We consider a generalization of parking functions to parking distributions on trees and study the unordered
version and a q-analogue. We give an efficient way to form generating functions to compute these values and
establish the positivity and log-concavity of a related polynomial. We also connect the unordered parking
distributions on caterpillars (trees whose removal of leaves results in a path) to restricted lattice walks.
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1. Introduction

The classic parking function is defined by a parking process on a one-way street. Suppose there are n
parking spaces labeled 1, 2, . . . , n along the street. A set of n cars enter the street one by one, each with a
preferred space. As each car enters it moves directly to its preferred space and parks there if the space is
available. Otherwise the car moves towards the exit and takes the first available space. If there is no space
available, the car exits without parking. A parking function of length n is a preference sequence for the cars
in which all cars are able to park (not necessarily in their preferred spaces.)

We can represent this as a process on a path graph (see Figure 1) where the vertices correspond to the
available spaces and the cars move from left to right. The preferences (1, 2, 3, 4), (2, 1, 3, 4) or (1, 2, 4, 1)
all correspond to parking functions, while (2, 2, 2, 4) will have one car leave un-parked so is not a parking
function. It is well-known that any permutation of a parking function is also a parking function.

1 2 3 4

Figure 1: A path with the root at 4

The set of parking functions is a basic object lying in the center of enumerative combinatorics, with many
generalizations and connections to other research areas, such as hashing and linear probing in computer
science, graph searching algorithms, interpolation theory, diagonal harmonics, and sandpile models. Because
of their rich theories and applications, parking functions and their variations have been studied extensively
in the literature. For a comprehensive survey on the combinatorial theory of parking functions see Yan [20].

There is a particular generalization of parking functions that has been considered recently. Returning to
the parking process described at the beginning of this paper, the essential features are as follows:
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• Each car has an initial preferred parking location.

• If a location is currently occupied then cars have a consistent rule to proceed and search for an opening.

• Each car will terminate its search after finitely many steps and exit.

For the path we start at a vertex and then if we cannot find a spot we continue moving along the path
and eventually exit. If we make the last vertex the root of the path, then the parking rule can be stated as
follows:

Go to the preferred vertex, if it is not available continue moving towards the root and park at the
first available spot; if no spot has been found and the root is reached, then exit.

This rule works for any rooted tree T . This suggests that one can consider parking functions on a general
rooted tree T , where each vertex of T represents a parking space, and edges are oriented toward the root,
representing one-way streets. Again n cars enter one by one, each with a preferred parking space. A
sequence of preferences such that all cars can park in the vertices of T under the above rule is called a
T -parking function and was first studied by Bruner and Panholzer [1], who also considered parking functions
on mappings.1 Via analytic combinatorial techniques, Bruner and Panholzer revealed a beautiful relation
between the total number of parking functions on rooted trees and that on mappings, presented exact and
asymptotic enumerative results, and described a phase change behavior when one considers m cars parking
on n available spots.

A variation of classic parking functions is the non-decreasing parking functions, which are parking pref-
erence sequences (a1, a2, . . . , an) such that a1 ≤ a2 ≤ · · · ≤ an. It is well-known that in the classical case,
(i.e., T is a path with n vertices), there are (n + 1)n−1 parking functions and Cn non-decreasing parking
functions, where Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number. In this paper we consider the generalization of

non-decreasing parking functions on rooted trees, which are called T -parking distributions and can be rep-
resented by functions f : V (T ) → N, where

∑
v∈T f(v) = |T | with f(v) indicating the number of cars that

prefer vertex v, and with f corresponding to a preference assignment where all cars can be parked. Parking
distributions are well-defined since permuting the order of a T -parking function does not affect whether all
cars are able to park. We will also consider a q-analogue of the number of parking distributions which keeps
track of the total number of failed attempts to park, or the bumps. Again this number is independent of the
order the cars attempt to park.

Example 1. The rooted tree T shown in Figure 2 has twelve T -parking distributions, which we can group
by the number of failed parking attempts (“bumps”).

bumps parking functions
0 12345
1 11245, 12245, 12334, 12344
2 11234, 11244, 12234, 12244
3 11124, 11224, 12224

Therefore the q-analogue form of the T -parking distribution is 1 + 4q + 4q3 + 3q3 (i.e., the coefficient of qi

is the number of times we have exactly i bumps).

We proceed as follows. In Section 2 we characterize the set of T -parking distributions by a system of
n linear inequalities. In Section 3 we introduce generating functions related to parking distributions which
contain additional information to aid in the quick computation of these functions and establish some basic
results including the positivity and log-concavity of a related polynomial. In Section 4 we consider parking
distributions on caterpillars (trees where removing all leaves yields a path) and give a connection to restricted
lattice walks. Finally in Section 5 we give some concluding remarks and open questions.

1We started this project in the summer of 2013 before [1] appeared in the arXiv. We had considered the parking process on
rooted trees independently, but not on mappings.
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Figure 2: A tree T with the root at 5

2. Characterization of parking distributions

The aim of this section is to give a characterization for parking distributions. We start with T -parking
functions. Let T be a rooted tree with vertices labeled 1, 2, . . . , n. Let c1, c2, . . . , cn be the n cars and assume
that ci prefers the vertex with label ui. The sequence (u1, . . . , un) is a T -parking function if and only if all
the cars can find a parking space in T .

It is easy to check that if (u1, . . . , un) is a T -parking function, then so is (uσ1
, . . . , uσn

) for any permutation
σ of length n. A proof can be found in Bruner and Panholzer [1, Lemma 2.1]. Below we prove a stronger
result in Theorem 1.

The permutation invariance allows us to view the parking process as a special ball-bin distribution
problem. We start with n = |T | distinguishable balls each having a preferred vertex and on each vertex
of T there is a bin that can hold one ball. Now place all balls according to their preferences. In any bin
that has more than one ball have any extra balls move toward the root. A T -parking function is then an
assignment of preferences where no ball drops out of the root. The T -parking distributions correspond to
the cases where the balls are indistinguishable. This ball-bin model will help us understand the behavior of
parking distributions.

Recall that a characterization of classical parking functions of length n is that there are at least i terms
less than or equal to i in the preference sequence. For tree parking functions and parking distributions, we
have a similar characterization.

In a rooted tree T , let Tu be the subtree of T rooted at u, i.e., Tu contains all the descendants of u, which
are vertices w such that u lies in the unique path from w to the root. A distribution of indistinguishable
balls on the vertices of T can be described as a function f : V (T ) → N, where f(u) is the number of balls
preferring the vertex u.

Theorem 1. Let f be a distribution of indistinguishable balls on the vertices of T . Apply the parking process
to the balls. Then each vertex of T will get a ball if and only if∑

w∈Tu

f(w) ≥ |Tu| for all vertices u. (1)

Proof. Since only the balls which start in a vertex of Tu can end at Tu, the necessity is obvious. Conversely,
since

∑
w∈Tu

f(w) > |Tu \ {u}|, at least one car tried to park in u, hence any vertex u is nonempty. Note
that this doesn’t depend on the particular order of the cars, hence it also proves the permutation invariance
of T -parking functions.

Theorem 1 can be viewed as a special case of the Marriage Theorem. However, because of the tree
structure we have a much simpler form—instead of the usual 2n inequalities we need only n. Theorem 1
allows us to describe T -parking distributions as non-negative integer solutions subject to certain linear
constraints, since a distribution function f is a T -parking distribution if and only if it satisfies (1) and∑
v∈T f(v) = |T |. In general, if f satisfies (1) and

∑
v∈T f(v) = m, then we have m ≥ n and there are m−n

balls dropping out of the root.
The permutation invariance also implies that the order of the terms in a T -parking function will not affect

the number of failed parking attempts, or the number of bumps. For any vertex v the number of cars that
will move from that vertex towards the root is the difference between the number of cars having preference
at the subtree Tv and the number of vertices of Tv. In particular the order on the parking function will not
affect how many bumps must happen at one vertex and hence will not affect the total number of bumps.
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Let f be a T -parking distribution. Denote by bump(f) the number of bumps any T -parking function
corresponding to the parking distribution f would have. Then we have

bump(f) =
∑
v

( ∑
w∈Tv

f(w)− |Tv|
)
.

For classical parking functions, the bump is called the total displacement, and the bump of car ci is the indi-
vidual displacement. The values of total and individual displacements are of particular interest in problems
related to hashing algorithms [3, 5, 6, 18].

3. Generating function for parking distributions

In this section we will produce a generating function for each rooted tree T , the constant term of which
gives the number of T -parking distributions.

To illustrate the basic idea of the approach, consider the tree shown in Figure 3 consisting of taking
two rooted trees T1 and T2 and combining them together by connecting their respective roots to a new
root vertex v. One way to construct a T -parking distribution is to combine a T1-parking distribution and a
T2-parking distribution and have one car prefer the root v. The other way to do this is to find a distribution
on one of the trees with all vertices getting a parked car and one vehicle that exits together with a parking
distribution on the other tree. In particular it is useful not only to know how many parking distributions
there are on the subtrees, but also how many distributions there are where all vertices get a parked car and
with one extra unparked car that exits.

v

T1 T2

Figure 3: A tree T with two subtrees off the root

In general, we are interested in two different counts:

• pi(T ): The number of T -parking distributions where each vertex gets a car parked and i cars exit.

• qi(T ): The bump q-analogue of the number of T -parking distributions where each vertex gets a car
parked and i cars exit. In formula, qi(T ) is a polynomial of q defined by

qi(T ) =
∑
f

qbump(f),

where f ranges over all T -parking distributions counted by pi(T ).

When it is clear from context we will simply use pi and qi respectively for these functions. Define their
respective generating functions as

PT (x) =
∑
i≥0

pix
i, and QT (x) =

∑
i≥0

qix
i.

The number and its bump q-analogue of the T -parking distributions are given by PT (0) and QT (0), respec-
tively.

Observation 1. If T = , then PT (x) =
1

1− x
and QT (x) =

1

1− qx
.

This is easy to see since a single vertex only has one parking distribution with i cars exiting. Namely,
the vertex repeated i + 1 times. So we have pi( ) = 1 and qi( ) = qi. Putting these coefficients into the
above generating functions and simplifying, we get the results.

Given rooted trees T1, T2, . . . , Tk, let T = T1 ⊕ T2 ⊕ · · · ⊕ Tk be the rooted tree formed by taking the
union of the Ti and adding a new root vertex v that is connected to the roots of Ti. We say that T is the
direct sum of T1, T2, . . . , Tk.
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Theorem 2. Let T = T1 ⊕ T2 ⊕ · · · ⊕ Tk. Then

PT (x) =
1

x

(∏
i PTi(x)

1− x
−
∏
iPTi

(0)

)
,

QT (x) =
1

qx

(∏
iQTi

(qx)

1− qx
−
∏
iQTi

(0)

)
.

Proof. We prove the equation for QT (x); the one for PT (x) is then obtained by considering q = 1. The result
for QT (x) reduces to understanding the following equation:

qn(T ) = qn
n+1∑
j=0

( ∑
(m1,m2,...,mk)`j

( k∏
i=1

qmi
(Ti)

))
,

where (m1,m2, . . . ,mk) ` j (mi ∈ N) indicates that we are summing over all ordered partitions of j into k
parts.

To see this we group parking distributions by how many cars prefer the root. Since ultimately n cars
will exit we can have anywhere from 0 to n+ 1 cars preferring the root. Suppose that n+ 1− j cars initially
prefer the root. This means that we will need to have j more cars end up at the root and this can be done
by having the cars come from the subtrees, in particular suppose that we will have mi cars coming from
Ti, where

∑
imi = j (i.e., an ordered partition of j). The bumps can happen in two general locations: up

among the trees Ti, and at vertex v. The term
∏k
i=1 qmi

(Ti) takes care of counting the bumps that happen
in the trees (i.e., the bumps in the exponents add when multiplying terms together). That leaves us to
determine what happens at v, but there are exactly n bumps at v which correspond to the n cars that leave
(i.e., anything that is bumped at v exits un-parked); so to account for this we add the term qn to the front.

Note that qn(T ) can be expressed as

qn(T ) =
1

q

n+1∑
j=0

qn+1−j
( ∑

(m1,m2,...,mk)`j

( k∏
i=1

qmiqmi
(Ti)

))
.

From here we use three basic manipulations for generating functions (see [19]). The first is to note that

∏
i

QTi
(qx) =

∞∑
j=0

( ∑
(m1,m2,...,mk)`j

( k∏
i=1

qmiqmi
(Ti)

))
xj .

The second is convolving this with 1/(1− qx) = 1 + qx+ q2x2 + q3x3 + · · · gives∏
iQTi

(qx)

1− qx
=

∞∑
n=0

( n∑
j=0

qn−j
( ∑

(m1,m2,...,mk)`j

( k∏
i=1

qmiqmi(Ti)

))
xn

Lastly, this is almost what we need, except that we need to shift the entries by 1 and divide out by a q (i.e.,
we are off by 1 in the exponent for q). This can be accomplished by subtracting off the constant term, i.e.,∏
iQTi

(0), and then dividing the result by qx.

For reference we provide these two generating functions for all trees on two or three vertices in Table 1.

3.1. Computation of the generating functions

The main benefit of Theorem 2 is that this gives a way to compute the number of T -parking distributions
for large trees without having to exhaustively generate all possible distributions.

Observation 2. If T is a tree on n vertices then PT (x)(1 − x)n = MT (x) where MT (x) is a degree n − 1
polynomial satisfying MT (1) = 1.
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T Generating functions

PT (x) =
2− x

(1− x)2

QT (x) =
(1 + q)− q2x

(1− qx)(1− q2x)

PT (x) =
5− 6x+ 2x2

(1− x)3

QT (x) =
(1 + 2q + q2 + q3)− (q2 + 2q3 + 2q4 + q5)x+ (q5 + q6)x2

(1− qx)(1− q2x)(1− q3x)

PT (x) =
3− 3x+ x2

(1− x)3

QT (x) =
(1 + 2q)− (2q2 + q3)x+ q4x2

(1− qx)(1− q2x)2

Table 1: Generating functions for small trees.

This follows by noting it works for the case when T is a single vertex and then verifying that the result
holds when we build up the tree using the recursion from Theorem 2. Further we note that MT (0) = PT (0)
and so it suffices to compute MT (x) if we want to determine the number of parking distributions. Following
Theorem 2, we have the following corollary.

Corollary 3. Let T be a tree on n vertices with root v and assume T = T1 ⊕ T2 ⊕ · · · ⊕ Tk . Then the
polynomial MT (x) can be computed by the recurrence

MT (x) =

∏
iMTi(x)− (1− x)n

∏
iMTi(0)

x

and the initial condition that if T = , then MT = 1.

The values for MT (x) for |T | ≤ 3 can be found by Observation 1 and Table 1. In Table 2 we list the
polynomials MT (x) for |T | = 4, 5. One thing to notice about all of these polynomials is that they are distinct.
For trees up through 18 vertices it has been verified that all rooted trees have distinct polynomials.

Using the recursive approach we can compute MT (x) for any tree and also determine MT (x) for specific
families.

Example 2. For T = Pn, the path with n vertices with a root at a leaf, we have MPn(x) =
∑n−1
k=0 hn,kx

k

where

hn,k = (−1)k
(n− k)(n− k + 1)

(n+ k)(n+ k + 1)

(
n+ 1

k

)
Cn =

(−1)k

n

(
2n

n− 1− k

)(
n+ k − 1

k

)
and Cn is the nth Catalan number.

The result in the preceding example can be established using the recursive definition of MT and some
basic combinatorial identities; we leave the details to the interested reader.

Remark 1. We note that there is a method given MT (x) to reconstruct the tree(s) which it came from.
Namely, given MT (x) let (−1)n−1c be the coefficient of xn−1. We note that the product of the MTi will have
degree strictly less than n, and therefore c is

∏
iMTi

(0). Then we have

F (x) :=xMT (x) + c(1− x)n =
∏
i

MTi(x).

Now look at factorizations of F (x) and recurse. Note that after we have factored we can determine how
many leaves appended to the root there needed to be, i.e., how many of the MTi(x) = 1. It is possible that
there are multiple legal factorizations and so this does not (yet) show that the polynomials are unique to
their trees.
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14− 28x+ 20x2 − 5x3 7− 12x+ 8x2 − 2x3

9− 17x+ 12x2 − 3x3 4− 6x+ 4x2 − x3

42− 120x+ 135x2 − 70x3 + 14x4 19− 48x+ 50x2 − 25x3 + 5x4

16− 39x+ 40x2 − 20x3 + 4x4 12− 29x+ 30x2 − 15x3 + 3x4

28− 78x+ 87x2 − 45x3 + 9x4 23− 62x+ 68x2 − 35x3 + 7x4

9− 20x+ 20x2 − 10x3 + 2x4 14− 36x+ 39x2 − 20x3 + 4x4

5− 10x+ 10x2 − 5x3 + x4

Table 2: MT (x) for trees on 4 and 5 vertices.

Exact formulas for the generating function QT (x) are more complicated. Nevertheless, we observe that
it can be expressed as a rational function of q and x. To describe it we need some notation. Let T be a
rooted tree with the root vertex v. For any vertex u in T , let d(u), the depth of u, be the distance from u
to the root v. In particular d(v) = 0.

Observation 3. If T is a rooted tree with n vertices then

QT (x)
∏
u∈T

(1− qd(u)+1x) = NT (q, x)

where NT (q, x) is a polynomial in the variables q, x. In NT (q, x) the highest degree of x is n−1. In addition,
NT (1, x) = MT (x) and NT (q, 0) = q0(T ).

We can again use Theorem 2 to get a recurrence of NT (q, x).

Corollary 4. If T = , then NT (q, x) = 1. Otherwise, if T is a tree with n vertices and the root v, and
T = T1 ⊕ T2 ⊕+ · · ·+⊕Tk, then

NT (q, x) =

∏
iNTi

(q, x)−
∏
v(1− qd(v)+1x)

∏
iNTi

(q, 0)

qx
.

One notices that both PT (x) and QT (x) are rational functions with special denominators. We will give
a combinatorial explanation in the next subsection.

3.2. Positivity of coefficients in MT (−x) and NT (q,−x)

In this section we give a combinatorial interpretation for the rationality of PT (x) and QT (x). As a
corollary we prove that the coefficients of MT (−x) and NT (q,−x) are all positive.

Let us start with the classical case, i.e., where T = Pn is the path with n vertices. Assume that the
vertices of Pn are v1, . . . , vn, where vi is the vertex labeled by i and vn is the root. Let Cn,k be the number
of non-decreasing parking functions of length n + 1 (i.e., Pn+1-parking functions) whose maximal element
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is k + 1. Then for any distribution function f : {v1, . . . , vn} → N such that every vertex of Pn gets a car
parked and i cars exit, we can uniquely decompose f as the sum of two functions from {v1, . . . , vn} to N as
follows: Let k be the index such that f(v1) + f(v2) + · · · f(vk) < n ≤ f(v1) + f(v2) + · · ·+ f(vk+1). Define

f1(vi) =


f(vi), if i ≤ k
n−

∑k
j=1 f(vj), if i = k + 1

0, if i > k + 1.

and f2(vi) = f(vi) − f1(vi) for all i. Then f1 is a Pn-parking distribution whose maximal element is k + 1
and f2 is a distribution of i identical balls over n− k distinguishable bins. It follows that

PPn(x) =

n−1∑
k=0

Cn−1,k
(1− x)n−k

, (2)

and

MPn(x) =

n−1∑
k=0

Cn−1,k(1− x)k,

The last equation implies that all the coefficients of MPn(−x) are positive.
The triangle array {Cn,k : n ≥ 0, 0 ≤ k ≤ n} is known as Catalan’s triangle, which is sequence A009766

in the Online Encyclopedia of Integer Sequences (OEIS) and has many combinatorial interpretations [15].
The coefficients hn,k of MPn

(x) are related to Cn,k via the equation

(−1)khn,k =

n−1∑
s=k

(
s

k

)
Cn−1,s.

The signless triangle array {(−1)khn,k : n ≥ 1, 0 ≤ k < n} is called Borel’s triangle , which is sequence
A234950 in the OEIS. (In the OEIS the row index of Borel’s triangle {Tn,k} starts at zero. Hence hn,k =
Tn−1,k.) This sequence occurs as the Betti numbers of certain ideals in the polynomial ring K[x1, . . . , xn]
and arises in the enumeration of up-down patterns in permutations; see [4, 16]. The first five rows of Borel’s
and Catalan’s triangles are listed below.

Borel’s triangle Catalan triangle
1
2 1
5 6 2
14 28 20 5
42 120 135 70 14

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14

For the bump q-analogue, let Cn−1,k(q) be the bump-enumerator

Cn−1,k(q) =
∑
f

qbump(f)

where f ranges over all non-decreasing parking functions of length n with maximal element k+ 1. Then the
above decomposition of f → (f1, f2) implies

QPn
(x) =

n−1∑
k=0

Cn−1,k(q)

(1− qx)(1− q2x) · · · (1− qn−kx)
, (3)

and

NPn
(q, x) = QPn

(x)

n∏
i=1

(1− qix) =

n−1∑
k=0

Cn−1,k(q)(1− qn−k+1x) · · · (1− qnx).

It follows from the last equation that all the coefficients of NPn
(q,−x) are positive.
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For a general tree, we want to find expressions of PT (x) and QT (x) similar to (2) and (3). For a rooted
tree of n vertices, label the vertices from 1 to n such that if u is a descendant of w, then the label of u is
less than the label of w. (Hence the root must have label n.) Fix this labeling throughout and let vi be the
vertex with label i.

Define a parking configuration on T as a function from V (T ) to {0, 1}, where 0 means the vertex is empty
and 1 means there is a car parked at the vertex. Let g : V (T ) → N be a distribution function such that
if we apply the parking process to this distribution, then each vertex of T gets a car. Define a parking
distribution ρg as follows. Start with the empty parking configuration g(0) on T and sequentially define n
parking configurations g(1), g(2), . . . , g(n) on T , where in each round some cars enter and look for parking
spaces according to the usual parking rule. More precisely, from i = 1 to n we process the vertices v1 to
vn one by one. In round i, starting with the parking configuration g(i−1), we put g(vi) many new cars on
the vertex vi and apply the parking rules. Assume that k of these cars find some vertices of T to park and
others exit. This results in a new parking configuration g(i) of cars on the vertices of T . Set ρg(i) = k and
go to the next round.

The above procedure yields a T -parking distribution ρg, which we call the core of g. Clearly each
distribution counted by pi(T ) has a core. If f itself is a T -parking distribution, then ρf = f .

Example 3. Consider the tree given in Figure 4.

4

3

1 2

Figure 4: A tree T with the root at 4

Let g be the distribution g(v1) = 1, g(v2) = 2, g(v3) = 2 and g(v4) = 3. The parking configurations after
rounds 1 through 4 are given in Figure 5, where a red vertex means there is a car parked at that vertex. The
core ρg is the T -parking distribution given by ρg(v1) = 1, ρg(v2) = 2, ρg(v3) = 1 and ρg(v4) = 0.

g(1) g(2) g(3)

one car exits

g(4)

three cars exit

Figure 5: An example highlighting the core

Conversely, given a T -parking distribution f , we characterize all the distribution functions whose core is
f . For a vertex vi of T , we say that it is closed with respect to f if there is a T -parking distribution f ′ such
that f(vj) = f ′(vj) for 1 ≤ j < i and f(vi) < f ′(vi). Otherwise vi is open with respect to f . Note that the
root is always an open vertex.

Example 4. Let T be the rooted tree P1⊕P1 with three vertices. The following table shows all the T -parking
distributions and the open and closed vertices with respect to them.

It can be easily checked that for a distribution g,

• the core of g is f1 if and only if g(v1) = g(v2) = 1 and g(v3) ≥ 1;

• the core of g is f2 if and only if g(v1) = 1, g(v2) ≥ 2 and g(v3) ≥ 0;

• the core of g is f3 if and only if g(v1) ≥ 2, g(v2) ≥ 1 and g(v3) ≥ 0.
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T T -parking distribution closed vertices open vertices

3

1 2 f1(v1) = f1(v2) = f1(v3) = 1

f2(v1) = 1, f2(v2) = 2, f2(v3) = 0

f3(v1) = 2, f3(v2) = 1, f3(v3) = 0

v1, v2

v1

∅

v3

v2, v3

v1, v2, v3

Table 3: Parking distributions of P1 ⊕ P1 and the open and closed vertices.

In general, we have the following characterization.

Theorem 5. Let f be a T -parking distribution. Then for a distribution function g, the core of g is f if and
only if the following linear constraints hold:

g(u) = f(u) for any closed vertex u with respect to f,

g(u) ≥ f(u) for any open vertex u with respect to f.

Proof. Assume ρg = f . We compare the procedures of defining the cores for g and f . We show by induction
that at each round, g(i) = f (i) and g(vi) ≥ f(vi), where the equality holds if vi is closed. The claim is true
for the base case i = 0, since g(0) = f (0) = ∅ by definition.

Assume the claim is true for i − 1 ≥ 0, we shall show it for i. At the beginning of round i, the parking
configurations g(i−1) and f (i−1) are the same. When one adds g(vi) new cars to the vertex vi, exactly f(vi)
of them find parking spaces, which must be the first f(vi) available spaces on the path from vi to the root.
Hence g(vi) ≥ f(vi) and g(i) = f (i). If vi is a closed vertex, then on the path from vi to the root, there are
still empty spaces. Thus we must have g(vi) = f(vi), otherwise g(vi) > f(vi) then at least f(vi) + 1 of the
new cars entered at vi can park, which is a contradiction.

The converse is similar.

Let Open(f) and Closed(f) be the set of open and closed vertices of T with respect to f and op(f) =
|Open(f)|, c(f) = |Closed(f)|. Note that Open(f) 6= ∅ since the root is always open. Then Theorem 5
implies that

PT (x) =
∑
f

1

(1− x)op(f)
=

n∑
k=1

dk(T )

(1− x)k
,

where f ranges over all T -parking distributions and dk(T ) is the number of T -parking distributions with k
open vertices. Similarly.

QT (x) =
∑
f

qbump(f)∏
u∈Open(f)(1− q(d(u)+1)x)

,

where f ranges over all T -parking distributions. It follows that the coefficients of MT (−x) and NT (q,−x)
are all positive.

3.3. Log-concavity of coefficients of MT (−x)

Examination of the entries in Table 2 suggests that the coefficients of MT (−x) not only are positive, but
also form a log-concave sequence, i.e., satisfy a2i ≥ ai−1ai+1 for any three consecutive terms. This holds in
general and the following approach was communicated to us by Richard Stong [17].

Lemma 6. Let q(t) be a polynomial of degree at most n − 1 with non-negative integer coefficients and
q(0) 6= 0. Then

Q(t) =
tn+1q(1)− q(t)

t− 1

is a polynomial of degree n with non-decreasing positive integer coefficients and P (x) = Q(x + 1) is a
polynomial of degree n with (strictly) log-concave positive integer coefficients.

10



Proof. Let q(t) =
∑n−1
k=0 qkt

k and take qn = 0 by convention. Then we compute

Q(t) =

n−1∑
k=0

qk
tn+1 − tk

t− 1
=

n−1∑
k=0

qk(tk + tk+1 + · · ·+ tn) =

n∑
d=0

( d∑
k=0

qk

)
td.

From this and the hypothesis that q0 = q(0) > 0, it is obvious that the coefficients of Q(t) are non-decreasing
positive integers.

From the above formula for Q(t) we have

P (x) = Q(x+ 1) =

n−1∑
k=0

qk
(x+ 1)n+1 − (x+ 1)k

x

=

n−1∑
k=0

qk

n∑
d=0

((
n+ 1

d+ 1

)
−
(

k

d+ 1

))
xd

=

n∑
d=0

( n−1∑
k=0

qk

((
n+ 1

d+ 1

)
−
(

k

d+ 1

)))
xd.

From this it is obvious that the P (x) =
∑n
k=0 pkx

k is a polynomial with positive integer coefficients. Proving
that the coefficients are strictly log-concave amounts to proving the inequality p2r − pr−1pr+1 > 0 for r =
1, . . . , n−1. Since each pk is a linear function of the coefficients qk of q(t), the right hand side of the inequality
is quadratic in these coefficients. We will prove the inequality by showing that in fact the coefficient of qkqm
is positive for all 0 ≤ k,m ≤ n− 1. This amounts to the inequality

2

((
n+ 1

r + 1

)
−
(

k

r + 1

))((
n+ 1

r + 1

)
−
(

m

r + 1

))
−
((

n+ 1

r

)
−
(
k

r

))((
n+ 1

r + 2

)
−
(

m

r + 2

))
−
((

n+ 1

r + 2

)
−
(

k

r + 2

))((
n+ 1

r

)
−
(
m

r

))
> 0.

Using the identity
(
s
r+1

)
= s−r

r+1

(
s
r

)
and rearranging we can rewrite this as

2(n+ 1− r)(n+ 2)

(r + 2)(r + 1)2

((
n+ 1

r

)
−
(
k

r

))((
n+ 1

r

)
−
(
m

r

))
+

(n+ 1−m)(r(n−m) + (3n+ 4−m))

(r + 2)(r + 1)2

(
m

r

)((
n+ 1

r

)
−
(
k

r

))
+

(n+ 1− k)(r(n− k) + (3n+ 4− k))

(r + 2)(r + 1)2

(
k

r

)((
n+ 1

r

)
−
(
m

r

))
+

2(n+ 1− k)(n+ 1−m)

(r + 1)2

(
k

r

)(
m

r

)
> 0.

Since each term of this expression is clearly non-negative and the first term is strictly positive, the result
follows.

Theorem 7. For any tree T , the coefficients of MT (−x) are positive and log-concave.

Proof. We proceed by induction on the number of vertices and work with KT (t) = MT (1− t). For the base
case we have M (−x) = 1.

Now suppose that for all rooted trees T with at most n vertices that KT (t) has degree |T | − 1, non-

decreasing positive integer coefficients, and KT (0) > 0. Now let T̂ be a rooted tree on n + 1 vertices with
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root v and that removing the root leaves trees T1, . . . , Tk. Then

KT̂ (t) = MT̂ (1− t) =

∏
iMTi

(1− t)− tn+1
∏
iMTi

(0)

1− t

=

∏
iKTi

(t)− tn+1
∏
iKTi

(1)

1− t

=
tn+1

∏
iKTi

(1)−
∏
iKTi

(t)

t− 1
.

Now note that by the induction hypothesis, q(t) =
∏
iKTi

(t) is a polynomial of degree at most n− 1 (more
precisely the degree is n minus the number of subtrees connected to the root), with non-negative integer
coefficients, and q(0) > 0. Therefore applying Lemma 6 we conclude that KT̂ (t) has degree n, non-decreasing
positive integer coefficients. Further we have KT̂ (t+ 1) = MT̂ (−t) has (strictly) log-concave positive integer
coefficients, establishing the result.

4. Caterpillars and lattice walks

The purpose of this section is to enumerate the number of T -parking distributions for special families of
trees. We will present explicit formulas for p0(T ) for some families. A basic approach is to use the recurrence
proved in Theorem 2 and then read the constant coefficient. The formula also calls for the values of p1(T ),
the number of distributions on T where each vertex gets a car parked and one car exits. In other words,
given a rooted tree T , let T̂ be the rooted tree obtained from T by connecting a new vertex v̂ to the root of
T , and reset the root to be at v̂. Then p1(T ) is the number of parking distributions on T̂ such that there is
no car preferring v̂, i.e., p1(T ) = p0(T̂ )− p0(T ). We have the following general theorem.

Theorem 8. Let T = T1 ⊕ T2 ⊕ · · · ⊕ Tk. Then

p0(T ) =

(
1 +

k∑
i=1

p1(Ti)

p0(Ti)

)
k∏
i=1

p0(Ti).

Proof. The formula can be obtained from the recurrence in Theorem 2. Here we give a direct combinatorial
argument. Let f be a T -parking distribution. Clearly for the root vertex v, we must have f(v) ≤ 1.

If f(v) = 1, the restriction of f on each branch Ti must be a parking distribution of Ti. There are∏k
i=1 p0(Ti) such parking distributions.

If f(v) = 0, then the car parking at the spot v at the end of the parking process must come from a branch
Ti for i ∈ [k]. This implies that f is a parking distribution when restricted to Tj for j 6= i; while restricted
to Ti, each vertex of Ti gets a car and exactly one car exits Ti. There are p1(Ti)

∏
j:j 6=i p0(Tj) such parking

distributions.

From Theorem 1 we know that pi(T ) equals the number of non-negative integer solutions of the system∑
v∈V (T )

xu = n+ i (4)

∑
w∈Tu

xw ≥ |Tu| for all u ∈ V (T ). (5)

For certain families of rooted trees, we can count the number of non-negative integer solutions of the
above systems by using lattice paths in plane. Take T = Pn as an example. For i = 0 the equations (4) and
(5) become x1 + x2 + · · · + xn = n and x1 + · · · + xk ≥ k for all k = 1, 2, . . . , n. It is well-known that the
number of non-negative integer solutions of the above system is given by the n-th Catalan number Cn.

For pi(Pn), the equations (4) and (5) become x1 + x2 + · · · + xn = n + i and x1 + · · · + xk ≥ k for all
k = 1, 2, . . . , n. Each non-negative integer solution of this system can be represented by a lattice path in
the Euclidean plane. For each solution of the equation x1 + · · · + xn = n + i, we start from the origin and
represent xi by a horizontal step (xi, 0) and each addition sign by a vertical step (0, 1). Then we obtain a
lattice paths from (0, 0) to (n + i, n − 1). The inequalities x1 + · · · + xk ≥ k for all k imply that the path
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is sub-diagonal, i.e., never goes above the diagonal y = x. Using the result that the number of sub-diagonal
lattice paths from (0, 0) to (a, b) for integers a ≥ b is a−b+1

a+b+1

(
a+b+1
b

)
, (see [12]), we obtain that

pi(Pn) =
i+ 2

2n+ i

(
2n+ i

n− 1

)
.

In particular,

p1(Pn) =
3

2n+ 1

(
2n+ 1

n− 1

)
=

3n

n+ 2
Cn.

Applying Theorem 8 and the above formulas, we obtain the formula of p0(T ) when T is a superstar or a
rooted tree of depth no more than two.

Corollary 9. Let m1, . . . ,mk be positive integers and T = Pm1 ⊕ · · · ⊕ Pmk
be a superstar. Then

p0(T ) =

(
1 +

k∑
i=1

3mi

mi + 2

)
k∏
i=1

Cmi
.

In particular, for Starn, the star with n vertices, p0(Starn) = n.

Corollary 10. Let T be a rooted tree of depth no more than two, that is, the distance between any vertex u
and the root v is no more than 2. Then T is a direct sum of stars, i.e., T = Starm1

⊕ Starm2
⊕ · · · ⊕ Starmk

for some positive integers m1, . . . ,mk. We have

p0(T ) =

(
1 +

k∑
i=1

mi + 1

2

)
k∏
i=1

mi. (6)

Proof. We just need to compute p1(Starn). Let us consider the value of f(v) for the root v. Clearly f(v) ≤ 2.
If f(v) = 2, then there is only one possible distribution, namely, f(u) = 1 for all u 6= v.
If f(v) = 1, then there are n − 1 distributions, corresponding to integer solutions of the equation x1 +

x2 + · · ·+ xn−1 = n and xi ≥ 1.
If f(v) = 0, then there are

(
n
2

)
such parking distributions, corresponding to integer solutions of the

equation x1 + x2 + · · ·+ xn−1 = n+ 1 and xi ≥ 1.

Combining the above three cases, we obtain p1(Starn) = n(n+1)
2 = n+1

2 p0(Starn), which leads to (6).

Next we turn to another family of trees, namely, caterpillars, for which the number pi(T ) can be expressed
as the number of lattice paths with certain right boundaries.

Let a1, a2, . . . , ak be positive integers with a1 ≥ 2. A caterpillar T = Cat(a1, a2, . . . , ak) is a tree which
contains a path v1− · · ·− vk where vk is the root, and each vi is connected to an additional ai− 1 leaves, for
1 ≤ i ≤ k. (Hence the farthest vertex from the root has depth k.) See Figure 6 for the example Cat(4, 2, 4, 2)

where k = 4 and the path v1−v2−v3−v4 is 4−6−10−12 with vertex 12 being the root. Let N =
∑k
i=1 ai,

which is the number of vertices of Cat(a1, . . . , ak).
Our main tool is the enumeration of lattice paths in the plane with a given right boundary. Let us review

the basic notation in lattice path counting. Let s be a non-decreasing sequence with positive integer terms
s0, s1, s2, . . . , thought of as a strict right boundary. A lattice path from (0, 0) to (x, n) is represented by the
sequence (x0, x1, . . . , xn−1) where (xi, i) is the rightmost point in the lattice path with y-coordinate i. Such
a path is an s-lattice path if xi < si for 0 ≤ i ≤ n− 1. Figure 7 shows the lattice path (1, 1, 6, 8) from (0, 0)
to (11, 4), which stays on the left of the boundary s = (4, 6, 10, 12, . . . ), indicated by the black dots. (In
other words, the allowed lattice path cannot touch any points in the shaded area. )

If x ≥ sn−1−1, then the number of s-lattice paths from (0, 0) to (x, n) does not depend on x. Let LPn(s)
be this common number. For example, when s = 1, 2, 3 . . . , then LPn(s) is just the n-th Catalan number
Cn. By convention, we always let LP0(s) = 1.

Theorem 11. Let T = Cat(a1, . . . , ak) be a caterpillar. Then

p0(T ) = LPk(a1, a1 + a2, . . . , a1 + · · ·+ ak),
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Figure 6: The caterpillar Cat(4, 2, 4, 2)
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Figure 7: The lattice path (1, 1, 6, 8) with boundary s = (4, 6, 10, 12, . . . )

and
pi(T ) = LPk+i(a1, a1 + a2, . . . , a1 + · · ·+ ak, N, . . . , N︸ ︷︷ ︸

i copies

),

where N =
∑k
i=1 ai.

Proof. We establish a bijection between T -parking distributions and certain lattice paths. First, index the
vertices of T from 1 to N as follows. The leaves connected to vertex v1 are indexed from 1 to a1 − 1, v1 is
indexed by a1; then the leaves connected to v2 are indexed by a1 + 1, . . . , a1 + a2 − 1 and v2 is indexed by
a1+a2. In general, vi is indexed by a1+· · ·+ai and the leaves connected to vi are indexed by a1+· · ·+ai−1+1
to a1 + · · ·+ ai − 1. The root is labeled by N . The labeling for Cat(4, 2, 4, 2) is shown in Figure 6.

In T there are k non-leaf vertices (including the root) and N − k leaves. For each leaf j, any parking
distribution f must have f(j) ≥ 1. Let

xj =

{
f(j)− 1 if j is a leaf,
f(j) otherwise.

Then f is a T -parking distribution if and only if

x1 + x2 + · · ·+ xN = k (7)

x1 + x2 + · · ·+ xa1+···+ai ≥ i for i = 1, 2, . . . , k. (8)

For each non-negative integer solution of (7), we map it to a lattice path starting from (0, 0) by replacing
each “+” by a horizontal step (1, 0) and replacing integer xj by a vertical step of length xj . Then the
non-negative integer solutions of (7) are in one-to-one correspondence to lattice paths in the plane from the
origin to the point (N − 1, k). The constraint (8) implies that the lattice path is strictly on the left of the
boundary (a1, a1 + a2, . . . , a1 + · · ·+ ak). For example, for T = Cat(4, 2, 4, 2) in Figure 6, the corresponding
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linear system defined by (7) and (8) is

x1 + x2 + · · ·+ x12 = 4
x1 + x2 + · · ·+ x4 ≥ 1
x1 + x2 + · · ·+ x6 ≥ 2
x1 + x2 + · · ·+ x10≥ 3.

As an example consider the following solution of the above system, x2 = 2, x7 = x9 = 1 and all other xi = 0.
It corresponds to the lattice path ENNEEEEENEENEE from (0, 0) to (11, 4), as depicted by the lattice
path in Figure 7. The right boundary of this path is (1, 1, 6, 8), which is less than s = (4, 6, 10, 12).

For pi(T ), the only difference is that (7) becomes

N∑
j=1

xj = k + i.

Hence the solutions correspond to lattice paths from the origin to (N − 1, k + i) with the strict right
boundary (a1, a1 + a2, . . . , a1 + · · · + ak) on the first k rows, or equivalently, the right boundary (a1, a1 +
a2, . . . , N,N, . . . , N) of length k + i.

Lattice paths are a classical subject in combinatorial theory, whose enumeration has been systematically
approached by symbolic computation and umbral calculus, see, for example, the book by Mohanty [12] and
extensive work done by Niederhausen and collaborators, e.g. [13, 14, 8]. In particular, it is known that lattice
paths within general boundaries can be computed by a determinant formula (see [12, p.32]).

Theorem 12. Let (b1, b2, . . . , bk) be a sequence of non-decreasing integers. Then

LPk(b1, b2, . . . , bk) = det

[(
br

s− r + 1

)]
1≤r,s≤k

.

Combining with Theorem 11 we have the following result.

Corollary 13. For a caterpillar T = Cat(a1, a2, . . . , ak), the number of T -parking distribution is given by

p0(T ) = det

[(
a1 + · · ·+ ar
s− r + 1

)]
1≤r,s≤k

. (9)

In addition, by setting ak+1 = ak+2 = · · · = ak+i = 0 we can express pi(T ) by a similar determinant of a
matrix of size (k + i)× (k + i).

pi(T ) = det

[(
a1 + · · ·+ ar
s− r + 1

)]
1≤r,s≤k+i

. (10)

Let us look at some special cases for T = Cat(a1, a2, . . . , ak).

1. k = 1. Then Cat(n) is a star with n vertices. The determinantal formula again gives p0(Starn) = n.

2. k = 2. From Corollary 13,

p0(T ) = det

(
a1

(
a1
2

)
1 a1 + a2

)
= a1

(
a2 +

a1 − 1

2

)
.

On the other hand, T can be viewed as the direct sum of Stara1 and a2 − 1 isolated points (which are
stars of one vertex). It is easy to check that the formula above agrees with (6).
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3. We say that the caterpillar is t-regular if a1 − 1 = a2 = · · · = ak = t. In this case p0(T ) = LPk(1 +
t, 1 + 2t, . . . , 1 + kt), the number of lattice paths with a linear boundary. It is known (see [10]) that

LPn(r, r + µ, r + 2µ, . . . , r + (n− 1)µ) =
r

r + n(µ+ 1)

(
r + n(µ+ 1)

n

)
. (11)

Substituting r = 1 + t, n = k and µ = t into (11), we obtain

p0(T ) =
1 + t

1 + t+ k(t+ 1)

(
1 + t+ k(t+ 1)

k

)
=

1

(1 + t)(k + 1) + 1

(
(1 + t)(1 + k) + 1

k + 1

)
,

which is the (k+1)-st term in the (1+t)-Fuss-Catalan sequence, a natural generalization of the classical
Catalan numbers. Explicitly, the n-th term of the r-Fuss-Catalan number is given by 1

rn+1

(
rn+1
n

)
, and

the classical Catalan numbers correspond to the case r = 2.

The numbers of lattice paths with a given right boundary s satisfy an Appell equation (see [10, 11]),
which is a variation of the ordinary generating function:

∞∑
n=0

LPn(s)xn(1− x)sn = 1. (12)

Let si = a1 + · · ·+ai+1 for i = 0, . . . , k− 2, and sj = N =
∑k
i=1 ai for j ≥ k− 1. Combining Theorem 11

and (12) we obtain a formula for the generating function PT (x) =
∑
i≥0 pi(T )xi when T is a caterpillar.

Theorem 14. Let T = Cat(a1, a2, . . . , ak) be a caterpillar and N =
∑k
i=1 ai. Then

PT (x) =
1

(1− x)Nxk

(
1−

k−1∑
i=0

xi(1− x)si · LPi(s0, s1, . . . , si−1)

)
.

Consequently, if MT (x) = (1− x)NPT (x), then

MT (x) =
1

xk

(
1−

k−1∑
i=0

xi(1− x)si · LPi(s0, s1, . . . , si−1)

)
.

(From (12) it can be seen that the polynomial in the parenthesis is a multiple of xk.)

Let us apply Theorem 14 to Pn for n ≥ 2, which is the caterpillar Cat(a1, . . . , an−1) with a1 = 2 and
a2 = · · · = an−1 = 1. The corresponding lattice paths has boundary s = (2, 3, . . . , n− 1, n, n, n, . . . ). Using
Formula (11) we have LPi(s) = Ci+1 for i = 1, 2, . . . , n− 1. Hence

MPn(x) =
1

xn−1

(
1−

n−2∑
i=0

Ci+1x
i(1− x)i+2

)
. (13)

The formula inside the parenthesis is a multiple of xn−1, which can be checked using the equation
∑
i≥0 Ci(x(1−

x))i = 1
1−x . Consequently, for 0 < k < n− 1, if [xk]h(x) is the coefficient of xk in a polynomial h(x), then

[xk]

n−2∑
i=0

Ci+1x
i(1− x)i+2 = 0.

It leads to an interesting binomial identity

k∑
i=0

(−1)k+iCi+1

(
i+ 2

k − i

)
= 0,

or equivalently, for k ≥ 1,
k∑
i=0

(−1)i
(
k + 1

k − i

)(
2i+ 2

k

)
= 0,

which we leave as an exercise.
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5. Concluding remarks and open questions

By utilizing the uniqueness of paths between vertices in a tree we have a natural generalization of parking
functions to rooted trees. We note that for other families of graphs we lose this uniqueness. In particular
this approach will not immediately generalize to all graphs without adding additional structure.

There are many different directions to go with this approach. There do exist distinct trees with the same
number of parking distributions (see Table 2 for an example), are there easy ways to characterize some of
these pairs? Does there exist a pair of distinct trees with the same generating function PT or QT ? We
comment that up through 18 vertices no such pair exists.

In Section 4 we looked at a special family and tied the result to lattice walks. Our calculation shows
that the bump of a caterpillar is related to the area of the lattice path in a complicated way. Can this lead
to a closed formula for the bump q-analogue? Are there other families where the parking distributions can
readily be determined? In a related question, can we give other combinatorial interpretations to the number
of parking distributions on trees with more structure?

We have focused on parking distributions in this paper, but one can also consider counting the ordered
variation as well. We note without proof that for a given tree T , if we let ri be the number of (ordered)

parking preferences which lead to all vertices filled and i cars exiting and let RT (x) =
∑
i≥0 ri

xi

(i+|T |)! , then

for the tree on a single vertex RT (x) = (ex − 1)/x and using the same notation of Theorem 2 we have
RT (x) = 1

x

(
ex
∏
iRTi(x)−

∏
iRTi(0)

)
.

We look forward to seeing more theory on parking distributions developed in future work.
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