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Introduction

The idea of self-similarity is one of the most basic and fruitful ideas in mathemat-
ics of all times and populations. In the last few decades it established itself as the
central notion in areas such as fractal geometry, dynamical systems, and statistical
physics. Recently, self-similarity started playing a role in algebra as well, first of all
in group theory.

Regular rooted trees are well known self-similar objects (the subtree of the regular
rooted tree hanging below any vertex looks exactly like the whole tree). The self-
similarity of the tree induces the self-similarity of its group of automorphisms
and this is the context in which we talk about self-similar groups. Of particular
interest are the finitely generated examples, which can be constructed by using
finite automata. Groups of this type are extremely interesting and usually difficult
to study as there are no general means to handle all situations. The difficulty of
study is more than fairly compensated by the beauty of these examples and the
wealth of areas and problems where they can be applied.

Branching is another idea that plays a major role in many areas, first of all in
Probability Theory, where the study of branching processes are one of the main
directions.

The idea of branching entered Algebra via the so called branch groups that were
introduced by the first author at St. Andrews Group Theory Conference in Bath
1997.

Branch groups are groups that have actions “of branch type” on spherically
homogeneous rooted trees. The phrase “of branch type” means that the dynamics
of the action (related to the subnormal subgroup structure) mimics the structure
of the tree. Spherically homogenous trees appear naturally in this context, both
because they are the universal models for homogeneous ultra-metric spaces and
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because a group is residually finite if and only if it has a faithful action on a
spherically homogeneous tree.

The importance of the choice of the “branch type” action is reflected in the
fact that it is the naturally opposite to the so called diagonal type. While any
residually finite group can act faithfully on a rooted homogeneous tree in diagonal
way, the actions of branch type are more restrictive and come with some structural
implications.

Actions of branch type give rise to many examples of just-infinite groups (thus
answering a question implicitly raised in [21] on existence of exotic examples of just
infinite groups) and to a number of examples of “small groups” (or atomic groups)
in the sense of S. Pride [78].

The ideas of self-similarity and branching interact extremely well in group theory.
There is a large intersection between these two classes of groups and this article
demonstrates some important features and examples of this interaction.

This survey article is based on the course of four talks that were given by the first
author at St. Andrews Group Theory Conference 2005 (although we do indicate
here some new examples and links). We hope that it will serve as an accessible and
quick introduction into the subject.

The article is organized as follows.
After a quick overview of several self-similar objects and basics notions related

to actions on rooted trees in Section 1 and Section 2, we define the notion of
a self-similar group in Section 3 and explain how such groups are related to finite
automata. Among the examples we consider are the Basilica group, the 3-generated
2-group of intermediate growth known as “the first group of intermediate growth”
and the Hanoi Towers groups Hk, which model the popular (in life and in mathe-
matics) Hanoi Towers Problem on k pegs, k ≥ 3.

Section 4 contains a quick introduction to the theory of iterated monodromy
groups developed by Nekrashevych [70, 71]. This theory is a wonderful example of
application of group theory in dynamical systems and, in particular, in holomorphic
dynamics. We mention here that the well known Hubbard Twisted Rabbit Problem
in holomorphic dynamics was recently solved by Bartholdi and Nekrashevych [12]
by using self-similar groups arising as iterated monodromy groups.

Section 5 deals with branch groups. We give two versions of the definition (alge-
braic and geometric) and mention some of basic properties of this groups. We show
that the Hanoi Group H(3) is branch and hence the other Hanoi groups are at least
weakly branch.

Section 6 and Section 7 deal with important asymptotic characteristics of groups
such as growth and amenability. Basically, all currently known results on groups
of intermediate growth and on amenable but not elementary amenable groups
are based on self-similar and/or branch groups. Among various topics related to
amenability we discus (following the article [19]) the question on the range of
Tarski numbers and amenability of groups generated by bounded automata and
their generalizations, introduced by Said Sidki.

In the last sections we give an account of the use of Schreier graphs in the circle
of questions described above, related to self-similarity, amenability and geometry
of Julia sets and other fractal type sets, substitutional systems and the spectral
problem. We finish with an example of a computation of the spectrum in a problem
related to Sierpiński gasket.

Some of the sections end with a short list of open problems.
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The subject of self-similarity and branching in group theory is quite young and the
number of different directions, open questions, and applications is growing rather
quickly. We hope that this article will serve as an invitation to this beautiful,
exciting, and extremely promising subject.

1. Self-similar objects

It is not our intention in this section to be very precise and define the notion of
self-similarity in any generality. Rather, we provide some examples of objects that,
for one reason or another, may be considered self-similar and that will be relevant
in the later sections.

The unit interval I = [0, 1] is one of the simplest mathematical objects that may
be considered self-similar. Indeed, I is equal to the union of two intervals, namely
[0, 1/2] and [1/2, 1], both of which are similar to I. The similarities between I and
the intervals I0 = [0, 1/2] and I1 = [1/2, 1] are the affine maps φ0 and φ1 given by

φ0(x) =
x

2
, φ1(x) =

x

2
+

1
2
.

The free monoid X∗ = X∗
k over the alphabet X = Xk = {0, . . . , k−1} is another

example of an object that may be considered self-similar (we usually omit the index
in Xk). Namely

X∗ = {∅} ∪ 0X∗ ∪ · · · ∪ (k − 1)X∗, (1.1)

where ∅ denotes the empty word and, for each letter x in X, the map φx defined
by

φx(w) = xw,

for all words w over X, is a “similarity” from the set X∗ of all words over X to the
set xX∗ of all words over X that start in x.

Both examples so far may be considered a little bit imperfect. Namely, the
intersection of I0 and I1 is a singleton (so the decomposition I = I0 ∪ I1 is not
disjoint), while the union decomposing X∗ involves an extra singleton (that is
not similar to X∗ in any reasonable sense). However, in both cases the apparent
imperfection can be easily removed.

For example, denote by J the set of points on the unit interval that is the
complement of the set of diadic rational points in I. Thus J = I \D where

D =
{

p

q
| 0 ≤ p ≤ q, p ∈ Z, q = 2m, for some non-negative integer m

}

Then φ0(J) = J0 and φ1(J) = J1 are sets similar to J , whose disjoint union is J .
Before we discuss how to remove the apparent imperfection from the decom-

position (1.1) we define more precisely the structure that is preserved under the
similarities φx, x ∈ X.

The free monoid X∗ has the structure of a rooted k-ary tree T = T (k). The
empty word ∅ is the root, the set Xn of words of length n over X is the level n,
denoted Ln, and every vertex u in T has k children, namely ux, x ∈ X. Figure 1
depicts the ternary rooted tree. Let u = x1 . . . xn be a word over X. The set uX∗

of words over X that start in u is a subtree of T , denoted Tu, which is canonically
isomorphic to the whole tree through the isomorphism φu defined as the composition
φu = φx1 . . . φxn (see Figure 2). In particular, each φx, x ∈ X, is a canonical tree
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Figure 1. The ternary rooted tree

isomorphism between the tree T and the tree Tx hanging below the vertex x on the
first level of T .
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Figure 2. Canonical isomorphism between T and Tu

The boundary of the tree T , denoted ∂T , is an ultrametric space whose points
are the infinite geodesic rays in T starting at the root. In more detail, each infinite
geodesic ray in T starting at the root is represented by an infinite (to the right)
word ξ over X, which is the limit ξ = lim

n→∞
ξn of the sequence of words {ξn}∞n=0

such that ξn is the word of length n representing the unique vertex on level n on
the ray. Denote the set of all infinite words over X by Xω and, for u in X∗, the
set of infinite words starting in u by uXω. The set Xω of infinite words over X
decomposes as disjoint union as

Xω = 0Xω ∪ · · · ∪ (k − 1)Xω.

Defining the distance between rays ξ and ζ by

d(ξ, ζ) =
1

k|ξ∧ζ|

where |ξ ∧ ζ| is the length of the longest common prefix ξ ∧ ζ of the rays ξ and ζ
turns Xω into a metric space, denoted ∂T . Moreover, for each x in X, the map φx

given by

φx(w) = xw,
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for all infinite words w in Xω, is a contraction (by a factor of k) from ∂T to the
subspace ∂Tx consisting of those rays in ∂T that pass through the vertex x. The
space ∂T is homeomorphic to the Cantor set. Its topology is just the Tychonov
product topology on XN, where X has the discrete topology. A measure on ∂T is
defined as the Bernoulli product measure on XN, where X has the uniform measure.

The Cantor middle thirds set C is a well known self-similar set obtained from I
by removing all points whose base 3 representation necessarily includes the digit 1.
In other words, the open middle third interval is removed from I, then the open
middle thirds are removed from the two obtained intervals, etc (the first three steps
in this procedure are illustrated in Figure 3) In this case C is the disjoint union of

Figure 3. The first three steps in the construction of the middle thirds Cantor set

the two similar subsets C0 = φ0(C) and C1 = φ1(C) where the similarities φ0 and
φ1 are given by

φ0(x) =
x

3
, φ1(x) =

x

3
+

2
3
.

A homeomorphism between the boundary of the binary tree ∂T (2) and the Cantor
middle thirds set is given by

x1x2x3 · · · ↔ 0.(2x1)(2x2)(2x3) . . . .

The number of the right is the ternary representation of a point in C (consisting
solely of digits 0 and 2).

Another well known self-similar set is the Sierpiński gasket. It is the set of points
in the plane obtained from the set of points bounded by an equilateral triangle by
successive removal of the middle triangles. A set of points homeomorphic to the
Sierpiński gasket is given in Figure 15.

The set in Figure 15 is the Julia set of a rational post-critically finite map on
the Riemann Sphere. Julia sets of such maps provide an unending supply of self-
similar subsets of the complex plane. For example, the Julia set of the quadratic
map z 7→ z2 − 1 is given in Figure 4.

In fact, some of the other examples we already mentioned are (up to homeomor-
phism) also Julia sets of quadratic maps. Namely, the interval [−2, 2] is the Julia
set of the quadratic map z 7→ z2 − 2, while the Julia set of the quadratic map
z 7→ z2 + c, for |c| > 2, is a Cantor set.

2. Actions on rooted trees

The self-similarity decomposition

X∗ = {∅} ∪ 0X∗ ∪ . . . (k − 1)X∗

of the k-ary rooted tree T = T (k), defined over the alphabet X = {0, . . . , k − 1},
induces the self-similarity of the group of automorphisms Aut(T ) of the tree T .
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Figure 4. Julia set of the map z 7→ z2 − 1

Namely, each automorphism of T can be decomposed as

g = πg (g0, . . . , gk−1), (2.1)

where πg is a permutation in Sk = Sym(Xk), called the root permutation of g
and, for x in X, gx is an automorphism of T , called section of g at x. The root
permutation and the sections of g are uniquely determined by the relation

g(xw) = πg(x)gx(w),

for x a letter in X and w a word over X. The automorphisms gx, x in X, represent
the action of g on the subtrees Tx hanging below the vertices on level 1, which are
then permuted according to the root permutation πg (see Figure 5).
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Figure 5. Decomposition g = πg (g0, . . . , gk−1) of an automorphism of T

Algebraically, Aut(T ) decomposes as

Aut(T ) = Sk n (Aut(T )× · · · × Aut(T )) = Sk n Aut(T )X = Sk oX Aut(T ). (2.2)

The product oX is the permutational wreath product defined by the permutation
action of Sk on X, i.e., Sk acts on Aut(T )X by permuting the coordinates (we
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usually omit the subscript in oX). For f, g ∈ Aut(T ), we have

gh = πg (g0, . . . , gk−1) πh (h0, . . . , hk−1) =
= πgπh (g0, . . . , gk−1)πh(h0, . . . , hk−1) =
= πgπh (gπh(0)h0, . . . , gπh(k−1)hk−1).

Thus

πgh = πgπh and (gh)x = gh(x)hx,

for x in X. The decomposition (2.2) can be iterated to get

Aut(T ) = Sk o Aut(T ) = Sk o (Sk o Aut(T )) = · · · = Sk o (Sk o (Sk o . . . )).
Thus Aut(T ) has the structure of iterated permutational wreath product of copies
of the symmetric group Sk.

The sections of an automorphism g of T are also automorphisms of T (describing
the action on the first level subtrees). The sections of these sections are also
automorphisms of T (describing the action on the second level subtrees) and so
on. Thus, we may recursively define the sections of g at the vertices of T by

gux = (gu)x,

for x a letter and u a word over X. By definition, the section of g at the root is g
itself. Then we have, for any words u and v over X,

g(uv) = g(u)gu(v).

Definition 1. Let G be a group acting by automorphisms on a k-ary rooted
tree T .

The vertex stabilizer of a vertex u in T is

StG(u) = { g ∈ G | g(u) = u }.
The level stabilizer of level n in T is

StG(Ln) = { g ∈ G | g(u) = u, for all u ∈ Ln } =
⋂

u∈Ln

StG(u).

Proposition 2.1. The n-th level stabilizer of a group G acting on a k-ary tree
is a normal subgroup of G. The group G/StG(Ln) is isomorphic to a subgroup of
the group

Sk o (Sk o (Sk o · · · o (Sk o Sk) . . . ))︸ ︷︷ ︸
n copies

and the index [G : StG(Ln)] is finite and bounded above by (k!)1+k+···+kn−1
.

Since the intersection of all level stabilizers in a group of tree automorphisms
is trivial (an automorphism fixing all the levels fixes the whole tree) we have the
following proposition.

Proposition 2.2. Every group acting faithfully on a regular rooted tree is
residually finite.
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The group Sk o (Sk o (Sk o · · · o (Sk o Sk) . . . )) that appears in Proposition 2.1 is the
automorphism group, denoted Aut(T[n]) of the finite rooted k-ary tree T[n] consisting
of levels 0 through n in T .

The group Aut(T ) is a pro-finite group. Indeed, it is the inverse limit of the
sequence

1 ← Aut(T[1]) ← Aut(T[2]) ← . . .

of automorphism groups of the finite k-ary rooted trees, where the surjective homo-
morphism Aut(T[n]) ← Aut(T[n+1]) is given by restriction of the action of Aut(T[n+1])
on T[n].

Since tree automorphisms fix the levels of the tree the highest degree of transi-
tivity that they can achieve is to act transitively on all levels.

Definition 2. A group acts spherically transitively on a rooted tree if it acts
transitively on every level of the tree.

Let G act on T and u be a vertex in T . Then the map

ϕu : StG(u) → Aut(T )

given by

ϕu(g) = gu

is a homomorphism.

Definition 3. The homomorphism ϕu is called the projection of G at u. The
image of ϕu is denoted by Gu and called the upper companion group of G at u.

The map

ψn : StG(Ln) →
∏

u∈Ln

Aut(T )

given by

ψn(g) = (ϕu(g))u∈Ln = (gu)u∈Ln

is a homomorphism. We usually omit the index in ψn when n = 1.
In the case of G = Aut(T ) the maps ϕu : StAut(T )(u) → Aut(T ) and ψn :

StAut(T )(Ln) → ∏
u∈Ln

Aut(T ) are isomorphisms, for any word u over X and any
n ≥ 0.

The group Aut(T ) is isomorphic to the group Isom(∂T ) of isometries of the
boundary ∂T . The isometry corresponding to an automorphism g of T is naturally
defined by

g(ξ) = lim
n→∞

g(ξn),

where ξn is the prefix of length n of the infinite word ξ over X.
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3. Self-similar groups

3.1. General definition

We observed that the self-similarity of the k-ary rooted tree T induces the self-
similarity of its automorphism group. The decomposition of X∗ in (1.1) is reflected
in the decomposition of tree automorphisms in (2.1) and in the decomposition of
Aut(T ) in (2.2). The most obvious manifestation of the self-similarity of Aut(T ) is
that all sections of all tree automorphisms are again tree automorphisms. We use
this property as the basic feature defining a self-similar group.

Definition 4. A group G of k-ary tree automorphisms is self-similar if all
sections of all elements in G are elements in G.

Proposition 3.1. A group G of k-ary tree automorphisms is self-similar if and
only if, for every element g in G and every letter x in X, there exists a letter y in
X and an element h in G such that, for all words w over X,

g(xw) = yh(w).

Definition 5. A self-similar group G of k-ary tree automorphisms is recurrent
if, for every vertex u in T , the upper companion group of G at u is G, i.e.,

ϕu(StG(u)) = G.

Proposition 3.2. A self-similar group G of k-ary tree automorphisms is recur-
rent if for every letter x in X the upper companion group of G at x is G, i.e., for
every element g in G and every letter x, there exists an element h in the stabilizer
of x whose section at u is g.

Example 1. (Odometer) For k ≥ 2, define a k-ary tree automorphism a by

a = ρ (1, . . . , 1, a),

where ρ = (0 1 . . . k − 1) is the standard cycle that cyclically permutes (rotates)
the symbols in X. The automorphism a is called the k-ary odometer because of the
way in which it acts on the set of finite words over X. Namely if we interpret the
word w = x1 . . . xn over X as the number

∑
xik

i then

a(w) = w + 1, for w 6= (k − 1) . . . (k − 1), a((k − 1) . . . (k − 1)) = 0 . . . 0.

Thus the automorphism a acts transitively on each level of T , Z ∼= 〈a〉 and since

ak = (a, a, . . . , a)

the group generated by the odometer is a recurrent group. Therefore Z has a self-
similar, recurrent action on any k-ary tree.

Proposition 3.3. A k-ary tree automorphism acts spherically transitively on
T if and only if it is conjugate in Aut(T ) to the k-ary odometer automorphism.
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3.2. Automaton groups

We present a simple way to construct finitely generated self-similar groups. Let
π1, . . . , πm be permutations in Sk and let S = {s(1), . . . , s(m)} be a set of m distinct
symbols. Consider the system




s(1) = π1(s
(1)
0 , . . . , s

(1)
k−1)

. . .

s(m) = πm(s(m)
0 , . . . , s

(m)
k−1)

(3.1)

where each s
(i)
x , i = 1, . . . , m, x in X, is a symbol in S. Such a system defines

a unique set of k-ary tree automorphisms, denoted by the symbols in S, whose
first level decompositions are given by the equations in (3.1). Moreover, the group
G = 〈S〉 is a self-similar group of tree automorphisms, since all the sections of all
of its generators are in G.

The language of finite automata (in fact finite transducers, or sequential machines,
or Mealy automata) is well suited to describe the groups of tree automorphisms that
arise in this way.

Definition 6. A finite automaton is a quadruple A = (S, X, τ, π) where S is
a finite set, called set of states, X is a finite alphabet, and τ : S × X → S and
π : S ×X → X are maps, called the transition map and the output map of A.

The automaton A is invertible if, for all s in S, the restriction πs : X → X given
by πs(x) = π(s, x) is a permutation of X.

All the automata in the rest of the text are invertible and we will not emphasize
this fact. Each state of an automaton A acts on words over X as follows. When the
automaton is in state s and the current input letter is x, the automaton produces
the output letter y = πs(x) = π(s, x) and changes its state to sx = τ(s, x). The
state sx then handles the rest of the input (a schematic description is given in
Figure 6)

A before reading the letter x1 s x1x2x3 . . .

A after reading the letter x1 sx1y1 x2x3x4 . . .

Figure 6. An automaton A processing an input word x1x2x3 . . . starting at state s

Thus we have
s(xw) = πs(x)sx(w),

for x a letter and w a word over X, and we see that the state s acts on T as the
automorphism with root permutation πs and sections given by the states sx, x in
X.

Definition 7. Let A be a finite invertible automaton. The automaton group of
A, denoted G(A), is the finitely generated self-similar group of tree automorphisms
G(A) = 〈S〉 generated by the states of A.
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Example 2. (Basilica group B) Automata are often encoded by directed graphs
such as the one in Figure 7. The vertices are the states, each state s is labeled by
its corresponding root permutation πs and, for each pair of a state s and a letter x,
there is an edge from s to sx labeled by x. We use () to label the states with trivial
root permutations (sometimes we just leave such states unlabeled). The state 1
represents the identity automorphism of T . Consider the corresponding automaton
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55
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((

a ?>=<89:;()

0

tt

1

ww

b

?>=<89:;()

0,1

UU

1

Figure 7. The binary automaton generating the Basilica group

group B = 〈a, b, 1〉 = 〈a, b〉. The decompositions of the binary tree automorphisms
a and b are given by

a = (01) (b, 1),
b = (a, 1).

Note that we omit writing trivial root permutations in the decomposition. The
group B is recurrent. Indeed we have StB(L1) = 〈b, a2, a−1ba〉 and

b = (a, 1),

a2 = (b, b),

a−1ba = (1, a)

which shows that ϕ0(StB(L1)) = ϕ1(StB(L1)) = 〈a, b〉 = B.

Example 3. (The group G) Consider the automaton group G = 〈a, b, c, d〉
generated by the automaton in Figure 8. The decompositions of the binary tree
automorphisms a, b, c and d are given by

a = (01) (1, 1),
b = (a, c),
c = (a, d),
d = (1, b),

The group G is recurrent. Indeed we have StG(L1) = 〈b, c, d, aba, aca, ada〉 and

b = (a, c), aba = (c, a),
c = (a, d), aca = (d, a),
d = (1, b), ada = (b, 1),
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Figure 8. The binary automaton generating the group G

which shows that ϕ0(StG(L1)) = ϕ1(StG(L1)) = 〈a, b, c, d〉 = G.

Example 4. (Hanoi Towers groups) Let k ≥ 3. For a permutation α in Sk

define a k-ary tree automorphism aα by

aα = α (a0, . . . , ak−1)

where ai = 1 if i ∈ Supp(α) and ai = aα if i 6∈ Supp(α). Define a group

H(k) = 〈 a(ij) | 0 ≤ i < j ≤ k − 1 〉
of k-ary tree automorphisms, generated by aα corresponding to the transpositions
in Sk. For example, the automaton generating H(4) is given in Figure 9. The state
in the middle represents the identity and its loops are not drawn. We note that
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Figure 9. Automaton generating the Hanoi Towers group H(4) on 4 pegs

the directed graph in Figure 9 follows another common convention to encode the
transition and output function of an automaton. Namely, the vertices are the states
and for each pair of a state s and a letter x there is an edge connecting s to sx

labeled by x|s(x).
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The effect of the automorphism a(ij) on a k-ary word is that it changes the first
occurrence of the symbol i or j to the other symbol (if such an occurrence exists)
while leaving all the other symbols intact. A recursive formula for a(ij) is given by

a(ij)(iw) = jw, a(ij)(jw) = iw, a(ij)(xw) = xa(ij)(w), for x 6∈ {i, j}.
The group H(k) is called the Hanoi Towers group on k pegs since it models the

Hanoi Towers Problem on k pegs (see, for example, [57]). We quickly recall this
classical problem. Given n disks of distinct size, labeled 1, . . . , n by their size, and
k pegs, k ≥ 3, labeled 0, . . . , k − 1, a configuration is any placement of the disks
on the pegs such that no disk is placed on top of a smaller disk. Figure 10 depicts
a configuration of 5 disks on 3 pegs. In a single step, the top disk from one peg

2
3
45

1

0 1 2
Figure 10. A configuration of 5 disks on 3 pegs

can be moved to the top of another peg, provided the newly obtained placement of
disks represents a configuration. Initially all n disks are on peg 0 and the goal is to
move all the disks to another peg.

Words of length n over X encode the configurations of n disks on k pegs. Namely,
the word x1 . . . xn over X encodes the unique configuration of n disks in which disk
number i, i = 1, . . . , n, is placed on peg xi (once the content of each peg is known
the order of disks on the pegs is determined by their size). The automorphism a(ij)

represents a move between pegs i and j. Indeed, if the symbol i appears before the
symbol j (or j does not appear at all) in w then the disk on top of peg i is smaller
than the disk on top of peg j (or peg j is empty) and a proper move between these
two pegs moves the disk from peg i to peg j, thus changing the first appearance of
i in w to j, which is exactly what a(ij) does. If none of the symbols i or j appears,
this means that there are no disks on either of the pegs and the automorphism a(ij)

acts trivially on such words. In terms of H(k), the initial configuration of the Hanoi
Towers Problem is encoded by the word 0n and the goal is to find a group element
h ∈ H(k) written as a word over the generators a(ij) such that h(0n) = xn, where
x 6= 0.

For example, the configuration in Figure 10 is encoded by the ternary word 10221
and the three generators a(01), a(02) and a(12) of H(3), representing moves between
the corresponding pegs, produce the configurations

a(01)(10221) = 00221, a(02)(10221) = 12221, a(12)(10221) = 20221.

Let i, j, ` be three distinct symbols in X, Since (ij)(j`)(ij)(i`) is the trivial
permutation in Sk the element h = a(ij)a(j`)a(ij)a(i`) is in the first level stabilizer.
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Direct calculation shows that

ϕi(h) = a(ij), ϕj(h) = a(j`)a(i`), ϕ`(h) = a(ij), ϕt(h) = h, for t 6∈ {i, j, `},
which implies that every generator of H(k) belongs to every projection ϕi(St(L1)),
for all i = 0, . . . , k − 1.

Proposition 3.4. The group H(k) is a spherically transitive, recurrent, self-
similar group of k-ary tree automorphisms.

For latter use, in order to simplify the notation, we set

a(01) = a, a(02) = b, a(12) = c

for the generators of the Hanoi Towers group H(3) on 3 pegs.

3.3. Problems

We propose several algorithmic problems on automaton groups. All of them (and
many more) can be found in [43].

Problem 1. Is the conjugacy problems solvable for all automaton groups?

Problem 2. Does there exist an algorithm that, given a finite automaton A
and a state s in A, decides

(a) if s acts spherically transitively?
(b) if s has finite order?

Problem 3. Does there exist an algorithm that, given a finite automaton A,
decides

(a) if G(A) acts spherically transitively?
(b) if G(A) is a torsion group?
(c) if G(A) is a torsion free group?

4. Iterated monodromy groups

The notion of iterated monodromy groups was introduced by Nekrashevych. The
monograph [71] treats the subject in great detail (for earlier work see [70, 9]). We
provide only a glimpse into this area.

Let M be a path connected and locally path connected topological space and let
f : M1 → M be a k-fold covering of M by an open, path connected subspace M1

of M . Let t be a base point of M . The set of preimages

T =
∞⋃

n=0

f−n(t)

can be given the structure of a k-regular rooted tree in which t is the root, the
points from Ln = f−n(t) constitute level n and each vertex is connected by an edge
to its k preimages. Precisely speaking, some preimages corresponding to different
levels may coincide in M1 and one could be more careful and introduce pairs of the
form (x, n), where x ∈ f−n(t) to represent the vertices of T , but we will not use
such notation.
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Example 5. Consider the map f : C∗ → C∗ given by f(z) = z2 (here C∗ =
C\{0}). This is a 2-fold self-covering of C∗. If we choose t = 1 we see that the level
n in the binary tree T consist of all 2n-th roots of unity, i.e.

Ln = { e
2πi
2n ·m | m = 0, . . . , 2n − 1 }.

We can encode the vertex e
2πi
2n ·m at level n by the binary word of length n repre-

senting m in the binary system , with the first digit being the least significant one
(see Figure 11).

1 = e
2πi
22
·0 ↔ 00

. . .

1 = e
2πi
21
·0 ↔ 0

hhhhhhhh

VVVVVVVV

−1 = e
2πi
22
·2 ↔ 01

. . .

1 = e
2πi
20
·0 ↔ ∅

rrrrrrrrrrrrrrr

LLLLLLLLLLLLLLL

i = e
2πi
22
·1 ↔ 10

. . .

−1 = e
2πi
21
·1 ↔ 1

hhhhhhhh

VVVVVVVV

−i = e
2πi
22
·3 ↔ 11

. . .

Figure 11. The tree T corresponding to f(z) = z2

Define an action of the fundamental group π(M) = π(M, t) on the tree T of
preimages of t as follows. Define Mn = f−n(M). The n-fold composition map
fn : Mn → M is a kn-fold covering of M . For a path α in M that starts at t and a
vertex u in Ln = f−n(t) ⊆ Mn denote by α[u] the unique lift (under fn) of α that
starts at u. Let γ be a loop based at t. For u in Ln the endpoint of γ[u] must also be
a point in Ln. Denote this point by γ(u) and define a map Ln → Ln by u 7→ γ(u).
This map permutes the vertices at level n in T and is called the n-th monodromy
action of γ.

Proposition 4.1 (Nekrashevych). The map T → T given by

u 7→ γ(u)

is a tree automorphism, which depends only on the homotopy class of γ.

The action of π(M) on T by tree automorphisms, called the iterated monodromy
action of π, is not necessarily faithful.
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Definition 8. Let N be the kernel of the monodromy action of π(M) on T .
The iterated monodromy group of the k-fold cover f : M1 → M , denoted IMG(f),
is the group π(M)/N .

The action of IMG(f) on T is faithful. The classical monodromy actions on the
levels of T are modeled within the action of IMG(f) on T .

Example 6. Continuing our simple example involving f(z) = z2, let γ be the
loop γ : [0, 1] → C∗ based at t = 1 given by

θ 7→ e2πiθ,

i.e. γ is the unit circle traversed in the positive (counterclockwise) direction. For a
vertex u in Ln (a 2n-th root of unity) the path γ[u] is just the path starting at u,
moving in the positive direction along the unit circle and ending at the next 2n-th
root of unity (see Figure 12 for the case n = 2). Thus

iγ[i]

¯¯
−1

γ[−1] --

1

γ[1]
nn

−i
γ[−i]

MM

Figure 12. The monodromy action of π(C∗) = Z on level 2 in T , for f(z) = z2

γ
(
e

2πi
2n ·m

)
= e

2πi
2n ·(m+1)

and we see that on the corresponding binary tree T the action of γ is the binary
odometer action

γ = (01) (1, γ).

Therefore the action of π(C∗) on T is faithful and IMG(z 7→ z2) ∼= Z.

It is convenient to set a tree isomorphism Λ : T → T , where T is the k-ary rooted
tree over the alphabet X = {0, . . . , k − 1}, with an induced action of IMG(f) on
T . For this purpose, set Λ(∅) = t, choose a bijection Λ : X → L1, let `(∅) be the
trivial loop 1t based at t and fix paths `(0), . . . , `(k − 1) from t to the k points
Λ(0), . . . , Λ(k − 1) (the preimages of t). Assuming that, for every word v of length
n, a point Λ(v) at level n in T and a path `(v) in M connecting t to Λ(v) are
defined, we define, for x ∈ X, the path `(xv) by

`(xv) = `(x)[Λ(v)]`(v)

and set Λ(xv) to be the endpoint of this path (the composition of paths in π(M)
is performed from right to left).
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Definition 9. Let γ be a loop in π(M). Define an action of γ on T by

γ(u) = Λ−1γΛ(u),

for a vertex u in T . This action is called the standard action of the iterated
monodromy group IMG(f) on T .

We think of Λ as a standard isomorphism between T and T and, in order to
simplify notation, we do not distinguish the vertices in T from the points in T they
represent.

Theorem 4.2 (Nekrashevych). The standard action of IMG(f) on T is faithful
and self-similar. The root permutation of γ is the 1-st monodromy action of γ on
L1 = X. The section of γ at u, for u a vertex in T , is the loop

γu = `(γ(u))−1 γ[u] `(u).

Example 7. We calculate now the iterated monodromy group IMG(f) of the
double cover map f : C \ {0,−1, 1} → C \ {0,−1} given by z 7→ z2 − 1.

Choose the fixed point t = 1−√5
2 as the base point. The fundamental group

π(C \ {0,−1}) is the free group on two generators represented by the loops a and
b, where a is the loop based at t moving around −1 in positive direction along the
circle centered at −1 (see Figure 13) and b is the loop based at t moving around 0
in the positive direction along the circle center at 0. We have L1 = f−1(t) = {t,−t}
and we choose Λ(0) = t, Λ(1) = −t. Set `(0) to be the trivial loop 1t at t and
`(1) to be the path from t to −t that is moving along the top part of the loop b
(in direction opposite to b). Let c be the loop based at t2 traversed in the positive

t−1 0 1

a

b

a[0]

a

b[1]

t2

b[0]

−t

c

d

[1]

Figure 13. Calculation of the action of IMG(z 7→ z2 − 1)

direction along the circle centered at 0 and d the loop based at t2 traversed along
the circle centered at 1. Since t2 − 1 = t, c is exactly one unit to the right of a and
d is exactly one unit to the right of b. It is easy to see that a[0] is the path from
t to −t moving along the bottom part of the loop b and a[1] = `(1)−1 is the path
from −t to t moving along the top part of b. This is because applying z 7→ z2 to
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either one of these paths produces the loop c. Further, b[0] is the loop based at t
that is entirely in the interior of the loop a, whose radius is chosen in such a way
that applying z 7→ z2 yields the loop d. Similarly, b[1] is the loop based at −t that
is entirely in the interior of the loop d, whose radius is chosen in such a way that
applying z 7→ z2 yields the loop d (b[0] and b[1] are symmetric with respect to the
origin).

The loop a acts on the first level of T by permuting the vertices 0 and 1 and b
acts trivially. For the sections we have

a0 = `(a(0))−1 a[0] `(0) = `(1)−1 a[0] `(0) = a[1] a[0] 1t = b

a1 = `(a(1))−1 a[1] `(1) = `(0)−1 a[1] `(1) = 1t a[1] a−1
[1] = 1

b0 = `(b(0))−1 b[0] `(0) = `(0)−1 b[0] `(0) = 1t a 1t = a

b1 = `(b(1))−1 b[1] `(1) = `(1)−1 b[1] `(1) = a[1] 1−t a−1
[1] = 1

Thus IMG(z → z2 − 1) is the self-similar group generated by the automaton

a = (01) (b, 1)
b = (a, 1)

and we see that IMG(z → z2 − 1) is the Basilica group B.

Basilica group belongs to the class of iterated monodromy groups of post-critically
finite rational functions over the Riemann Sphere Ĉ = C∪{∞}. The groups in this
class are described as follows. For a rational function f : Ĉ → Ĉ of degree k let
Cf be the set of critical points and Pf = ∪∞n=1(f

n(Cf )) be the post-critical set.
If the set Pf is finite, f is said to be post-critically finite. Set M = Ĉ \ Pf and
M1 = Ĉ \ f−1(Pf ). Then f : M1 → M is a k-fold covering and IMG(f) is, by
definition, the iterated monodromy group of this covering.

Example 8. Consider the rational map f : Ĉ→ Ĉ

f(z) = z2 − 16
27z

.

Denote Ω = {ω0, ω1, ω2}, where ω0 = 1, ω1 = 1
2 +

√
3

2 i and ω2 = 1
2 −

√
3

2 i are the
third roots of unity. The critical set of f is Cf = − 2

3Ω ∪ {∞}. Direct calculation
shows that

f

(
−2

3
ωi

)
=

4
3
ω̄i = f

(
4
3
ωi

)
.

The post-critical set Pf = 4
3Ω ∪ {∞} is finite (f conjugates the points in this set),

and we have M = Ĉ \ ( 4
3Ω ∪ {∞}) and M1 = Ĉ \ (− 2

3Ω ∪ 4
3Ω ∪ {0,∞}). The

fundamental group π(M) is free of rank 3. It is generated by the three loops a, b
and c based at t = 0 as drawn in the upper left corner in Figure 14. In the figure,
the critical points in − 2

3Ω are represented by small empty circles, while the post-
critical points in 4

3Ω are represented by small black disks. The 3 inverse images
of the base point t = 0 are the points in the set 2 3√2

3 Ω and they are denoted by
Λ(0), Λ(1) and Λ(2) as in Figure 14. The base point and its three pre-images are
represented by small shaded circles in the figure. The paths `(0), `(1) and `(2) are
chosen to be along straight lines from the base point t = 0. Calculation of the vertex
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Figure 14. Calculation of the action of IMG
`
z 7→ z2 − 16

27z

´

permutations and the sections of the generators a, b and c of IMG(f) then gives

a = (01) (1, 1, b)
b = (02) (1, a, 1)
c = (12) (c, 1, 1).

The resemblance between IMG(f) and H(3) is obvious. In fact, for the map
f̄ : Ĉ→ Ĉ given by

z → z̄2 − 16
27z̄

,

we have IMG(f̄) = H(3). Further, if we define

g =(12) (h, h, h)
h = (g, g, g),

then g conjugates IMG(f) to H(3) in Aut(T ). The Julia set of the map f (or f̄) is
given in Figure 15.
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Figure 15. Sierpiński gasket, Julia set of z 7→ z2 − 16
27z

, limit space of H(3)

This set is homeomorphic to the Sierpiński Gasket, which is the well known plane
analogue of the Cantor middle thirds set. We will return to this set in Section 8,
when we discuss Schreier graphs of self-similar groups.

5. Branch groups

5.1. Geometric definition of a branch group

Here we consider some important subgroups of a group acting on a rooted tree
leading to the geometric definition of a branch group. We extend our considerations
to spherically homogeneous rooted trees (rather than regular).

For a sequence k̄ = {kn}∞n=1 of integers with kn ≥ 2, define spherically homoge-
nous rooted tree T = T (k̄) to be the tree in which level n consists of the elements
in Ln = Xk1 × · · · × Xkn (recall that Xk is the standard alphabet on k letters
Xk = {0, . . . , k − 1}) and each vertex u in Ln has kn+1 children, namely ux, for
x ∈ Xkn+1 . The sequence k̄ is the degree sequence of T .

The definition of a vertex and level stabilizer is analogous to the case of regular
rooted trees. We define now rigid vertex and level stabilizers.

Definition 10. Let G be a group acting on a spherically homogeneous rooted
tree T .

The rigid stabilizer of a vertex u in T is

RiStG(u) = { g ∈ G | the support of g is contained in the subtree Tu }.
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The rigid level stabilizer of level n in T is

RiStG(Ln) =

〈 ⋃

u∈Ln

RiStG(u)

〉
=

∏

u∈Ln

RiStG(u).

If the action of G on T is spherically transitive (transitive on every level) then
all (rigid) vertex stabilizers on the same level are conjugate.

For an arbitrary vertex u of level n we have

RiStG(u) ≤ RiStG(Ln) ≤ StG(Ln) ≤ StG(u).

The index of StG(Ln) in G finite for every n (bounded by k1!(k2!)k1 . . . (kn!)k1...kn−1).
We make important distinctions depending on the (relative) size of the rigid level
stabilizers.

Definition 11. Let G act spherically transitively on a spherically homogeneous
rooted tree T .

We say that the action of G is
(a) of branch type if, for all n, the index [G : RiStG(Ln)] of the rigid level stabilizer

RiStG(Ln) in G is finite.
(b) of weakly branch type if, for all n, the rigid level stabilizer RiStG(Ln) is

non-trivial (and therefore infinite).
(c) of diagonal type if, for some n, the rigid level stabilizer RiStG(Ln) is finite

(and therefore trivial after some level).

Definition 12. A group is called a branch (weakly branch) group if it admits
a faithful branch (weakly branch) type action on a spherically homogeneous tree.

When we say that G is a branch group, we implicitly think of it as being embedded
as a spherically transitive subgroup of the automorphism group of T .

Example 9. A rather trivial, but important, example of a branch group is the
full group of tree automorphisms Aut(T (k)) of the spherically homogeneous tree
defined by the degree sequence k. Indeed, in this case, for any vertex u at level n,

RiStG(u) ∼= Aut
(
T (σn(k))

)
,

where Aut
(
T (σn(k))

)
is the spherically homogeneous rooted tree defined by the

n-th shift σn(k) of the degree sequence k and

RiSt(Ln) = St(Ln).

In particular, for a regular k-ary tree T
RiStG(u) ∼= Aut(T ) and RiSt(Ln) = St(Ln).

Another example is given by the group of finitary automorphisms of T (k). This
group consists of those automorphisms that have only finitely many non-trivial
sections.

When the tree is k-regular another important example is the group of finite state
automorphisms. This group consists of those automorphisms that have only finitely
many distinct sections.
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Definition 13. Let G be a self-similar spherically transitive group of regular
k-ary tree and let K and M0, . . . , Mk−1 be subgroups of G. We say that K geo-
metrically contains M0 × · · · × Mk−1 if ψ−1(M0 × · · · × Mk−1) is a subgroup of
K.

In the above definition ψ is the map ψ : StG(L1) → G × · · · × G defined in
Section 2.

Definition 14. A self-similar spherically transitive group of automorphisms G
of the regular k-ary tree T is regular branch group over its normal subgroup K if
K has finite index in G and K × · · · ×K (k copies) is geometrically contained in
K as a subgroup of finite index.

The group G is regular weakly branch group over its non-trivial subgroup K if
K × · · · ×K (k copies) is geometrically contained in K.

Theorem 5.1. The Hanoi Towers group H = H(3) is a regular branch group
over its commutator subgroup H ′. The index of H ′ in H is 8, H/H ′ = C2×C2×C2

and the index of the geometric embedding of H ′ ×H ′ ×H ′ in H ′ is 12.

Proof. Since the order of every generator in H(3) is 2, every square in H is a
commutator. The equalities

(abac)2 = ([b, c], 1, 1),

(babc)2 = ([a, c], 1, 1),
(acacba)2 = ([a, b], 1, 1),

show that H ′ geometrically contains H ′×H ′×H ′. Indeed, sinceH(3) is recurrent, for
any element h0 in H there exists an element h in StH(L1) such that h = (h0, ∗, ∗),
where the ∗’s denote elements that are not of interest to us. Since H ′ is normal we
than have that whenever g = (g0, 1, 1) is in H ′ so is gh = (gh0

0 , 1, 1).
Thus H ′ geometrically contains H ′ × 1× 1. The spherical transitivity of H then

implies that the copy of H ′ at vertex 0 can be conjugated into a copy of H ′ at any
other vertex at level 1. Thus H ′ geometrically contains H ′ ×H ′ ×H ′.

For the other claims see [48]. We just quickly justify that the index of H ′×H ′×H ′

in H ′ must be finite, without calculating the actual index.
Since all the generators of H have order 2, the index of the commutator subgroup

H ′ in H is finite (not larger than 23). On the other hand H ′×H ′×H ′ is a subgroup of
the stabilizer St(L1) which embeds via ψ into H×H×H. The index of H ′×H ′×H ′

in H ×H ×H is finite, which then shows that the index of H ′×H ′×H ′ in St(L1)
is finite. Since the index of St(L1) in H is 6 we have that the index of H ′×H ′×H ′

in H (and therefore also in H ′) is finite.

Figure 16 provides the full information on the indices between the subgroups of
H mentioned in the above proof.

Example 10. The group G is a regular branch group over the subgroup K =
[a, b]G .
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Figure 16. Some subgroups near the top of H(3)

The group IMG(z 7→ z2 + i) is also a regular branch group. On the other hand,
Basilica group B = IMG(z 7→ z2 − 1) is a regular weakly branch group over its
commutator, but it is not a branch group.

We offer several immediate consequences of the branching property.

Theorem 5.2 (Grigorchuk [47]). Let G be a branch group of automorphisms
of T . Then G is centerless. Moreover the centralizer

CAut(T )(G)

of G in Aut(T ) is trivial.

Theorem 5.3 (Grigorchuk [47]). Let N be a non-trivial normal subgroup of a
weakly branch group G of automorphisms of T . Then there exists level n such that

(RiStG(Ln))′ ≤ N.

Corollary 5.4. Any proper quotient of a branch group is virtually abelian.

Quotients of branch groups can be infinite abelian groups. For example, this is
the case for Aut(T ) whose abelianization is infinite. It was an open question if
quotients of finitely generated branch groups can be infinite and this was answered
affirmatively in [25].

Theorem 5.5 (Bartholdi, Grigorchuk [10]). For any branch group G of auto-
morphisms of tree the stabilizer P = StG(ξ) of an infinite ray ξ in ∂T is weakly
maximal in G, i.e. P has infinite index and is maximal with respect to this property.

The following is a consequence of a more general result of Abért stating that if a
group G acts on a set X and all stabilizers of the finite subsets of X are different,
then G does not satisfy any group identities (group laws).

Theorem 5.6 (Abért [1]). No weakly branch group satisfies any group identi-
ties.

Proof. Consider the action of G on the boundary ∂T . It is enough to show that
for any finite set of rays Ξ = {ξ1, . . . , ξm} in ∂T and any ray ξ in ∂T that is not in
Ξ there exists an element g in G that fixes the rays in Ξ but does not fix ξ. Such
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an element g can be chosen from the rigid stabilizer RiStG(u) of any vertex u along
ξ that is not a vertex on any of the rays in Ξ.

The above result, with a more involved proof, can also be found in [62].

Theorem 5.7 (Abért [2]). No weakly branch group is linear.

A weaker version of the non-linearity result, applying only to branch groups, was
proved earlier by Delzant and Grigorchuk.

Theorem 5.8 (Delzant, Grigorhcuk [25]). A finitely generated branch group
G has Serre’s property (FA) (i.e. any action without inversions of G on a tree has
a fixed point) if and only if G is not indicable.

Under some conditions the branch type action of a branch group is unique up
to level deletion/insertion, i.e. we have rigidity results. Let T be a spherically
homogenous rooted tree and m an increasing sequence of positive integers (whose
complement in N is infinite). Define a spherically homogeneous rooted tree T ′
obtained by deleting the vertices from T whose level is in m and connecting
two vertices in T ′ if one is descendant of the other in T and they belong to two
consecutive undeleted levels in T . An action of a group G on T induces an action
on T ′. We say that the tree T ′ is obtained from T by level deletion and the action
of G on T ′ is obtained from the action on T by level deletion.

Theorem 5.9 (Grigorchuk, Wilson [45]). Let G be a branch group of automor-
phisms of T such that

(1) the degree sequence k consists of primes,
(2) each vertex permutation of each element g in G acts as a transitive cycle of

prime length on the children below it, and
(3) for each pair of incomparable vertices u and v (neither u is in Tv nor v is

in Tu), there exists an automorphism g in StG(u) that is active at v, i.e., the root
permutation of the section gv is nontrivial.

Then
(a) for any branch type action of G on a tree T ′′, there exists an action of G on T ′

obtained by level deletion such that there exists a G-equivariant tree isomorphism
between T ′′ and T ′.

(b)

Aut(G) = NAut(T )(G).

The following result provides conditions on topological as well as combinatorial
rigidity of weakly branch groups. It uses the notion of a saturated isomorphism.
Let G and H be level transitive subgroups of Aut(T ). An isomorphism φ : G → H
is saturated if there exists a sequence of subgroups {Gn}∞n=0 such that Gn and
Hn = φ(Gn) are subgroups of StG(Ln) and StH(Ln), respectively, and the action
of both Gn and Hn is level transitive on every subtree Tu hanging below a vertex
u on level n in T .
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Theorem 5.10 (Lavrenyuk, Nekrashevych [61]; Nekrashevych [71]). Let G and
H be two weakly branch groups acting faithfully on spherically homogeneous rooted
trees T1 and T2.

(a) Any group isomorphism φ : G → H is induced by a measure preserving home-
omorphism F : T1 → T2, i.e., there exists a measure preserving homeomorphism
F : ∂T1 → ∂T2 such that

φ(g)(F (w)) = F (g(w)),

for all g in G and w in ∂T1.
(b) If T1 = T2 = T and φ : G → H is a saturated isomorphism, then φ is induced

by a tree automorphism F : T → T .

Corollary 5.11 (Lavrenyuk, Nekrashevych [61]). (a) For any weakly branch
group G of automorphisms of T the automorphism group of G is the normalizer of
G in the group of homeomorphisms of the boundary ∂T of T , i.e.,

Aut(G) = NHomeo(∂T )(G).

(b) For any saturated weakly branch group G of automorphisms of T the auto-
morphism group of G is the normalizer of G in Aut(T ), i.e.,

Aut(G) = NAut(T )(G).

A spherically transitive group G of tree automorphism is saturated if it has a
characteristic sequence of subgroups {Gn}∞n=0 such that, for all n, Gn is a subgroup
of StG(Ln) and Gn acts transitively on all subtrees Tu hanging below a vertex u on
level n.

We note that the first complete description of the automorphism group of a
finitely generated branch group was given by Sidki in [80]. More recent examples
can be found in [44] and [13].

5.2. Algebraic definition of a branch group

We give here an algebraic version of a definition of a branch group. It is based
on the subgroup structure of the group.

Definition 15. A group G is algebraically branch group if there exists a
sequence of integers k = {kn}∞n=0 and two decreasing sequences of subgroups
{Rn}∞n=0 and {Vn}∞n=0 of G such that

(1) kn ≥ 2, for all n > 0, k0 = 1,
(2) for all n,

Rn = V (1)
n × V (2)

n × · · · × V (k1k2...kn)
n , (5.1)

where each V
(j)
n is an isomorphic copy of Vn,

(3) for all n, the product decomposition (5.1) of Rn+1 is a refinement of the
corresponding decomposition of Rn in the sense that the j-th factor V

(j)
n of Rn,

j = 1, . . . , k1k2 . . . kn contains the j-th block of kn+1 consecutive factors

V
((j−1)kn+1+1)
n+1 × · · · × V

(jkn+1)
n+1

of Rn+1,
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(4) for all n, the groups Rn are normal in G and
∞⋂

n=0

Rn = 1,

(5) for all n, the conjugation action of G on Rn permutes transitively the factors
in (5.1),

and
(6) for all n, the index [G : Rn] is finite.
A group G is weakly algebraically branch group if there exists a sequence of

integers k = {kn}∞n=0 and two decreasing sequences of subgroups {Rn}∞n=0 and
{Vn}∞n=0 of G satisfying the conditions (1)-(5).

Thus the only difference between weakly algebraically branch and algebraically
branch groups is that in the former we do not require the indices of Rn in G to be
finite. The diagram in Figure 17 may be helpful in understanding the requirements
of the definition.

G

R0 = V
(1)
0

nnnnnnnnnnnn

UUUUUUUUUUUUUUUUUUU

R1 = V
(1)
1 ×

¡¡
¡¡

¡¡

BB
BB

BB
B

. . . ×V
(k1)
1

ssssssss

DD
DD

DD
D

R2 = V
(1)
2 × . . . ×V

(k2)
2 × . . . ×V

((k1−1)k2+1)
2 × . . . ×V

(k1k2)
2

Figure 17. Branch structure of an algebraically branch group

Proposition 5.12. Every (weakly) branch group is algebraically (weakly) branch
group.

Proof. Let G admits a faithful branch type action on a spherically homogeneous
rooted tree T . By letting Rn = RiStG(Ln) and Vn = RiStG(vn), where vn is the
vertex on level n on some fixed ray ξ ∈ ∂T we obtain an algebraically (weakly)
branch structure for G.

Every algebraically branch group G acts transitively on a spherically homoge-
neous rooted tree, namely the tree determined by the branch structure of G (G
acts on its subgroups by conjugation and, by definition, this action is spherically
transitive on the tree in Figure 17). However, this action may not be faithful. In
particular, it is easy to see that a direct product of an algebraically branch group
and a finite abelian group produces an algebraically branch group with non-trivial
center. According to Theorem 5.2 such a group cannot have a faithful branch type
action.
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Remark 1. We note that every infinite residually finite group has a faithful
transitive action of diagonal type on some spherically homogeneous tree (even if
the group is a branch group and has a branch type action on another tree). Indeed,
let {Gn}∞n=0 be a strictly decreasing sequence of normal subgroups of G such that
(i) G0 = G, (ii) the index [Gn−1, Gn] = kn is finite for all n > 0 and (iii) the
intersection ∩∞n=1Gn is trivial. The set of all left cosets of all the groups in the
sequence Gn can be given the structure of a spherically homogenous tree, called
the coset tree of {Gn}, in which the vertices at level n are the left cosets of Gn

and the edges are determined by inclusion (each coset of Gn−1 splits as a disjoint
union of kn left cosets of Gn, which are the kn children of Gn−1). The group G
acts on the coset tree by left multiplication and this action preserves the inclusion
relation. Thus we have an action of G on the coset tree by tree automorphisms.
The action is transitive on levels (since G acts transitively on the set of left cosets
of any of its subgroups) and it is faithful because the only element that can fix the
whole sequence {Gn} is an element in the intersection ∩∞n=0Gn, which is trivial.
Let g be an element in the rigid stabilizer of the vertex G1 in the coset tree. Since
G1 must be fixed by g we have g ∈ G1. Let h be an element in G \ G1. For all
n ≥ 1 we must have ghGn = hGn. This is because, for all n ≥ 1, the coset hGn

is contained in hG1 and is therefore not in the subtree of the coset tree rooted at
G1. However, ghGn = hGn if and only if h−1gh ∈ Gn, and the normality of Gn

implies that g ∈ Gn. Since the intersection ∩∞n=1Gn is trivial we obtain that g = 1
and therefore the rigid stabilizer of G1 is trivial. The spherical transitivity of the
action then shows that RiStG(L1) is trivial.

5.3. Just infinite branch groups

Definition 16. A group is just infinite if it is infinite and all of its proper
quotients are finite.

Remark 2. Equivalently, a group is just infinite if it is infinite and all of its
non-trivial normal subgroups have finite index.

Proposition 5.13. Every finitely generated group has a just infinite quotient.

Proof. Union of normal subgroups of infinite index in a finitely generated group
G has infinite index in G (since the subgroups of finite index in G are finitely
generated). Therefore, by Zorn’s Lemma, there exists a maximal normal subgroup
N of infinite index and the quotient G/N is just infinite.

Definition 17. A group is hereditarily just infinite if all of its subgroups of
finite index are just infinite.

Remark 3. Equivalently, a group is hereditarily just infinite if all of its normal
subgroups of finite index are just infinite. This is because all subgroups of finite
index in a group G contain a normal subgroup of G of finite index.

Another way to characterize hereditarily just infinite groups is by the property
that all of their non-trivial subnormal subgroups have finite index.

Theorem 5.14 (Grigorchuk [47]). Let G be a just infinite group. Then either



28 ROSTISLAV GRIGORCHUK AND ZORAN ŠUNIĆ

(i) G is a branch group
or
G contains a a normal subgroup of finite index of the form K × · · · ×K, G acts

transitively on the factors in K × · · · ×K by conjugation, and
(iia) K is residually finite hereditarily just infinite group
or
(iib) K is an infinite simple group.

The above trichotomy result refines the description of just infinite groups pro-
posed by Wilson in [90].

5.4. Minimality

The notion of largeness was introduced in group theory by Pride in [78]. We say
that the group G is larger than the group H and we write G º H if there exists a
finite index subgroup G0 of G, finite index subgroup H0 of H and a finite normal
subgroup N of H0 such that G0 maps homomorphically onto H0/N . Two groups
are equally large if each of them is larger than the other. The class of groups that
are equally large with G is denoted by [G]. Classes of groups can be ordered by the
largeness relation º. The class of the trivial group [1] consists of all finite groups.
This is the smallest class under the largeness ordering. A class of infinite groups [G]
is minimal (or atomic) if the only class smaller than [G] is the class [1]. An infinite
group G is minimal if [G] is minimal class.

Example 11. Obviously, the infinite cyclic group is minimal. Also, any infinite
simple group is minimal.

A fundamental question in the theory of largeness of groups is the following.

Question 1. Which finitely generated groups are minimal?

We note that, since each finitely generated infinite group has a just infinite image,
every minimal class of finitely generated groups has a just infinite representative.
In the light of the trichotomy result in Theorem 5.14 we see that it is of particular
interest to describe the minimal branch groups. The following result provides a
sufficient condition for a regular branch group to be minimal.

Theorem 5.15 (Grigorchuk, Wilson [46]). Let G be a regular branch group
over K acting on the k-ary tree T . Assume that K is a subdirect product of
finitely many just infinite groups each of which is abstractly commensurable to
G. If ψ−1

n (K × · · · × K) is contained in K ′ for some n ≥ 1, then G is a minimal
group.

Corollary 5.16. The following groups are minimal.
(1) The group G.
(2) The Gupta-Sidki p-groups from [56].

The following questions were posed in [78] and in [26].



SELF-SIMILARITY AND BRANCHING IN GROUP THEORY 29

Question 2. (1) Are there finitely generated groups that do not satisfy the
ascending chain condition on subnormal subgroups?

(2) Are all minimal finitely generated groups finite-by-D2-by-finite, where D2

denotes the class of hereditarily just infinite groups?

The group G provides positive answer to the first question [39] and negative
answer to the second question. The minimality of G was established only recently
in [46]. An example of a minimal branch group answering negatively the second
question was constructed by P. Neumann in [72]. In fact, [72] contains examples
answering most of the questions from [78] and [26].

5.5. Problems

Most of the following problems appear in [11].

Problem 4. Is the conjugacy problem solvable in all finitely generated branch
groups with solvable word problem?

Problem 5. Do there exist finitely presented branch groups?

Problem 6. Do there exist branch groups with Property T?

Problem 7. Let N be the kernel of the action of an algebraically branch group
G by conjugation on the spherically homogeneous rooted tree determined by the
branch structure of G. What can be said about N?

Problem 8. Are there finitely generated torsion groups that are hereditarily
just infinite?

Problem 9. Can hereditarily just infinite group have the bounded generation
property?

Problem 10. Is every maximal subgroup of a finitely generated branch group
necessarily of finite index?

Problem 11. Which finitely generated just infinite branch groups are minimal?

The following problem is due to Nekrashevych [71].

Problem 12. For which post-critically finite polynomials f is the iterated
monodromy group IMG(f) a branch group?

6. Growth of groups

6.1. Word growth

Let G be a group generated by a finite symmetric set S (symmetric set means
that S = S−1). The word length of an element g in G with respect to S is defined
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as

|g|S = min{ n | g = s1 . . . sn, for some s1, . . . , sn ∈ S }.
The ball of radius n in G is the set

BS(n) = { g | |g|S ≤ n }
of elements of length at most n in G. The word growth function of G with respect
to S is the function γS(n) counting the number of elements in the ball BS(n), i.e.,

γS(n) = |BS(n)|,
for all n ≥ 0. The word growth function (often called just growth function) depends
on the chosen generating set S, but growth functions with respect to different
generating sets can easily be related.

Proposition 6.1. Let S1 and S2 be two finite symmetric generating sets of G.
Then, for all n ≥ 0,

γS1(n) ≤ γS2(Cn),

where C = max{ |s|S2 | s ∈ S1 }.

For two non-decreasing functions f, g : N → N+, where N is the set of non-
negative integers and N+ is the set of positive integers, we say that f is dominated
by g, and denote this by f ¹ g, if there exists C > 0 such that f(n) ≤ g(Cn), for
all n ≥ 0. If f and g mutually dominate each other we denote this by f ∼ g and
say that f and g have the same degree of growth.

Thus any two growth functions of a finitely generated group G have the same
degree of growth, i.e., the degree of growth is invariant of the group G. For example,
the free abelian group Zm of rank m has degree of growth equal to nm. On the other
hand, for m ≥ 2, the degree of growth of the free group of rank m is exponential,
i.e., it is equal to en. In general we have the following possibilities. The growth of
a finitely generated group G can be

polynomial: lim
n→∞

n
√

γ(n) = 1, γ(n) ¹ nm, for some m ≥ 0

intermediate: lim
n→∞

n
√

γ(n) = 1, nm ¹ γ(n), for all m ≥ 0

exponential: lim
n→∞

n
√

γ(n) = c > 1, γ(n) ∼ cn

The class of groups of polynomial growth is completely described. Recall that,
by definition, a group G is virtually nilpotent if it has a nilpotent subgroup of finite
index.

Theorem 6.2. A finitely generated group G has polynomial growth if and only
if it is virtually nilpotent.

In that case, γ(n) ∼ nm, where m is the integer

m =
n∑

i=1

i · rankQ(Gi−1/Gi),

1 = Gn ≤ . . . G1 ≤ G0 = G is the lower central series of G and rankQ(H) denotes
the torsion free rank of the abelian group H.
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The formula for the growth of a nilpotent group appears in [17] as well as in [55].
The other direction, showing that polynomial growth implies virtual nilpotence, is
due to Gromov [54].

In [68] Milnor asked if groups of intermediate growth exist. There are many
classes of groups that do not contain groups of intermediate growth. Such is the class
of linear groups (direct consequence of Tits Alternative [84]), solvable groups [93,
67], elementary amenable groups [22], etc.

The first known example of a group of intermediate growth is the group G.

Theorem 6.3 (Grigorchuk [38, 39]). The group G has intermediate growth.

The group G was constructed in [36] as an example of a finitely generated infinite
2-group. Other examples followed in [39, 40, 30] and more recently in [14, 11, 28,
18]. All known examples of groups of intermediate growth are either branch self-
similar groups or are closely related to such groups.

The best known upper bound on the growth of a group of intermediate growth
is due to Bartholdi.

Theorem 6.4 (Bartholdi [6]). The growth function of G satisfies

γ(n) ¹ enα

,

where α = log 2
log 2−log η ≈ 0.767 and η ≈ 0.81 is the positive root of the polynomial

x3 + x2 + x− 2.

We define now the class of groups of intermediate growth introduced in [39].
Each group in this class is defined by an infinite word ω̄ in Ω = {0, 1, 2}N. Set up
a correspondence

0 ↔



1
1
0


 , 1 ↔




1
0
1


 , 2 ↔




0
1
1


 (6.1)

and, for a letter ω in {0, 1, 2}, define ω(b), ω(c) and ω(d) to be the top entry the
middle entry and the bottom entry, respectively, in the matrix corresponding to ω.
Let a be the binary tree automorphism defined by

a = (01) (1, 1).

Thus a only changes the first letter in every binary word. For a word ω̄ = ω1ω2 . . .
in Ω define binary tree automorphisms bω̄, cω̄ and dω̄ by

bω̄ = (aω1(b), bσ(ω̄)),

cω̄ = (aω1(c), cσ(ω̄)),

dω̄ = (aω1(d), dσ(ω̄))

where σ(ω̄) is the shift of ω̄ defined by σ(ω̄) = ω2ω3 . . . , i.e, (σ(ω̄))n = (ω̄)n+1, for
n = 1, 2, . . . . The only possible non-trivial sections of bω̄, cω̄ and dω̄ appear at the
vertices along the infinite ray 111 . . . and the vertices at distance 1 from this ray.
Define Gω̄ to be the group

Gω̄ = 〈a, bω̄, cω̄, dω̄〉
of binary tree automorphisms.
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Example 12. Let ω̄ be the periodic sequence ω̄ = (01)∞. The corresponding
sequence of matrices is 


1
1
0







1
0
1







1
1
0







1
0
1


 . . .

Since the top row of entries is invariant under the shift σ we have that bσ(ω̄) = bω̄.
Therefore

bω̄ = (a, bω̄).

On the other hand, the shift of the middle row of entries is equal to the bottom
row of entries and vice versa. Therefore we have cσ(ω̄) = dω̄ and dσ(ω̄) = cω̄ and

cω̄ = (a, dω̄),
dω̄ = (1, cω̄)

Thus G(01)∞ is a self-similar group defined by the 5 state binary automaton in
Figure 18. The similarity with the automaton generating G is not accidental. In
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Figure 18. The binary automaton generating the group G(01)∞

fact, in this context, the group G is defined by the periodic sequence 012012 . . . .

Theorem 6.5 (Grigorchuk [39]). (a) For every word ω̄ in Ω, Gω̄ is a spherically
transitive group of binary automorphisms such that the upper companion group of
Gω̄ at any vertex at level n is Gσn(ω̄).

(b) For every word ω̄ in Ω that is not ultimately constant, Gω̄ is not finitely
presented.

(c) For every word ω̄ in Ω in which all letters appear infinitely often, Gω̄ is a just
infinite branch 2-group.

(d) For every word ω̄ in Ω that is not ultimately constant, Gω̄ has intermediate
growth.

The groups in this class exhibit very rich range of (intermediate) growth behavior.
For example, the set of degrees of growth of these groups contain uncountable chains
and anti-chains (under the comparison of degrees of growth given by dominance).

The examples from [39] were generalized to examples of groups of intermediate
growth acting on p-ary trees, for p a prime, in [40]. These groups are defined by
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infinite words over {0, 1, . . . , p}. There is a general upper bound on the growth
in the case of groups defined by homogeneous sequences. A sequence ω̄ in Ω =
{0, 1, . . . , p}N defining a group Gω̄ is r-homogeneous if every symbol in {0, 1, . . . , p}
appears in every subword of ω̄ of length r.

Theorem 6.6. Let ω̄ be an r-homogeneous sequence.
(a) (Muchnik, Pak [69]) In case p = 2, the growth of Gω̄ satisfies

γ(n) ¹ enα

,

where α = log 2
log 2−log η and η is the positive root of the polynomial xr + x2 + x− 2.

(b) (Bartholdi, Šunić [14]) For arbitrary prime p, the growth of Gω̄ satisfies

γ(n) ¹ enα

,

where α = log p
log p−log η and η is the positive root of the polynomial xr+xr−1+xr−2−2.

An estimate analogous to the one above holds in the wider context of the so
called spinal groups (see [14, 11]).

Groups of intermediate growth appear also as iterated monodromy groups of
post-critically finite polynomials.

Theorem 6.7 (Bux, Perez [18]). The group IMG(z → z2+i) has intermediate
growth.

Most of the proofs that a group has sub-exponential growth are based on a
variation of the following contraction themes (see [39, 14, 69, 18]).

Proposition 6.8. (a) If G is a self-similar group of k-ary tree automorphisms
generated by a finite set S and there exist η in (0, 1), α ∈ (0, 1] and a constant C
such that, for all n, the ratio between the number of elements g in the ball BS(n)
that satisfy

k−1∑
x=0

|gx|S ≤ η|g|S + C

and γS(n) is at least α, then G has sub-exponential growth.
(b) If G is a self-similar group of k-ary tree automorphisms generated by a finite

set S and there exist η in (0, 1) and a constant C such that, for all g ∈ G,

k−1∑
x=0

|gx|S ≤ η|g|S + C,

then the growth of G satisfies

γS(n) ¹ enα

,

where α = log k
log k−log η .

(c) Let Φ = {Gλ}λ∈Λ be a family of groups acting on spherically homogeneous
rooted trees, let Φ be closed for upper companion groups, let each member Gλ of Φ
be generated by a finite set Sλ and let there be a uniform bound on the number of
generators in Sλ. Let η be a number in (0, 1). Assume that for each λ there exists
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a level mλ and a constant Cλ ≥ 0 such that, for all elements g in Gλ,
∑

u∈Lmλ

|gu|Sλu
≤ η|g|Sλ

+ Cλ,

Then all groups in Φ have sub-exponential growth.

A quite a different approach, both for the lower and upper bounds on the growth,
based on the Poisson boundary, is used by Erschler in her work.

Theorem 6.9 (Erschler [27]). The growth of the group Gω acting on the binary
tree and defined by the sequence ω̄ = (01)∞ satisfies

e
n

ln2+ε n ≤ γ(n) ≤ e
n

ln1−ε n

for any ε > 0 and any sufficiently large n.

In many cases, a general lower bound exists for the growth of groups of interme-
diate growth.

Theorem 6.10. (a) (Grigorchuk [41]) The degree of growth of any residually-p
group that is not virtually nilpotent is at least e

√
n.

(b) (Lubotzky, Mann [64]) The degree of growth of any residually nilpotent group
that is not virtually nilpotent is at least e

√
n.

Improvements over these general bounds are given for the particular case of G
in [63] and [7].

Finally, we mention that there are many examples of automaton groups that have
exponential growth. Such examples are the lamplighter groups [51, 15, 82], most
ascending HNN extensions of free abelian groups [15] (including the Baumslag-
Solitar solvable groups BS(1,m) for m 6= ±1), free groups [33, 88], etc. There
are self-similar groups of exponential growth within the class of branch automaton
groups. For example, H(k) has exponential growth, for all k ≥ 3.

6.2. Uniformly exponential growth

Let G be a group of exponential growth and let

εG = inf{ n
√

γS(n) | S a finite symmetric generating set of G }.
We say that G has uniformly exponential growth if εG > 1. In 1981 Gromov asked
if all groups of exponential growth have uniformly exponential growth. Affirmative
answer has been obtained for the classes of hyperbolic groups [60], one-relator
groups [20, 42], solvable groups (Wilson and Osin [77], independently), linear
groups over fields of characteristic 0 [29], etc. In [92] John Wilson showed that
the answer is negative in the general case.

Theorem 6.11 (Wilson [92]). There exist 2-generated branch groups of expo-
nential growth that do not have uniformly exponential growth.

Further examples of this type appear in [91] and [8].
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6.3. Torsion growth

Let G be a finitely generated torsion group and let S be a finite generating
symmetric set for G. For n ∈ N, denote by τ(n) the largest order of an element
in G of length at most n with respect to S. The function τ is called the torsion
growth function of G with respect to S. The degree of the torsion growth function
of G does not depend on the chosen finite generating set, i.e., if τ1 and τ2 are two
torsion growth functions of G with respect to two finite symmetric generating sets
S1 and S2, then τ1 ∼ τ2.

There exist polynomial estimates for the torsion growth of some groups Gω

from [39] and [40].

Theorem 6.12 (Bartholdi, Šunić [14]). (a) Let Gω̄ be a p-group defined by a
r-homogeneus sequence ω̄. The torsion growth function satisfies

τ(n) ¹ n(r−1) log2(p).

(b) The torsion growth function of G satisfies

τ(n) ¹ n
3
2 .

6.4. Subgroup growth

We describe here a result of Segal [79] that uses branch groups to fill a conjectured
gap in the spectrum of possible rates of subgroup growth.

For a finitely generated group G the number of subgroups of index at most n,
denoted s(n), is finite. The function s counting the subgroups up to a given index is
called the subgroup growth function of G. All subgroup growth considerations are
usually restricted to residually finite groups, since the lattice of subgroups of finite
index in G is canonically isomorphic to the lattice of subgroups of finite index in
the residually finite group G/N , where N is the intersection of all groups of finite
index in G.

It is shown by Lubotzky, Mann and Segal in [65] that a residually finite group
has polynomial subgroup growth (there exists m such that s(n) ≤ nm, for all
sufficiently large n) if and only if it is a virtually solvable group of finite rank.
It has been conjectured in [66] that if a finitely generated residually finite group
does not have polynomial subgroup growth then there exists a constant c > 0 such
s(n) ≥ n

c log(n)
(log log(n))2 , for infinitely many values of n.

Theorem 6.13 (Segal [79]). There exists a finitely generated just infinite branch

group such that, for any c > 0, s(n) ≤ n
c log(n)

(log log(n))2 , for all sufficiently large n.

The construction used by Segal is rather flexible and can be used to answer other
problems related to finite images of finitely generated groups.

Theorem 6.14 (Segal [79]). Let S be any set of finite non-abelian simple
groups. There exists a finitely generated just infinite branch group G such that
the upper composition factors of G (the composition factors of the finite images of
G) are precisely the members of S.
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6.5. Problems

Problem 13. (a) What is the degree of growth of G?
(b) What is the degree of growth of any group Gω̄, when ω̄ is not ultimately

constant?

Problem 14. (a) Is it correct that every group that is not virtually nilpotent
has degree of growth at least e

√
n?

(b) Are there groups whose degree of growth is e
√

n?

Problem 15 (Nekrashevych [71]). For which post-critically finite polynomials
f does the iterated monodromy group IMG(f) have intermediate growth?

7. Amenability

In this section we present some basic notions and results concerning amenability
of groups and show how branch (G) and weakly branch (B) self-similar groups
provide some crucial examples distinguishing various classes of groups related to
the notion of amenability.

7.1. Definition

The fundamental notion of amenability is due to von Neuman [87].

Definition 18. A group G is amenable if there exists a finitely additive left-
invariant probabilistic measure µ defined on all subsets of G, i.e.,

(i) (µ is defined for all subsets)

0 ≤ µ(E) ≤ 1,

for all subsets E of G,
(ii) (µ is probabilistic)

µ(G) = 1,

(iii) (µ is left invariant)

µ(E) = µ(gE),

for all subsets E of G and elements g in G,
(iv) (µ is finitely additive)

µ(E1 ∪ E2) = µ(E1) + µ(E2),

for disjoint subsets E1, E2 of G

Denote the class of amenable groups by AG. All finite groups are amenable
(under the uniform measure, which is the only possible measure in this case). Also,
all abelian groups are amenable, but all known proofs rely on the Axiom of Choice
(even for the infinite cyclic group).

Remark 4. A group G is amenable if and only if it admits a left invariant mean,
i.e., there exists a non-negative left invariant linear functional m on the space of
bounded complex valued functions defined on G that maps the constant function 1
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to 1. If such a mean exists we may define a measure on G by µ(E) = m(fE), where
fE is the characteristic function of the subset E of G.

The next result gives a combinatorial characterization of amenability.

Theorem 7.1 (Følner). A countable group G is amenable if and only if there
exists a sequence of finite subsets {An} of G such that, for every g in G,

lim
n→∞

|gAn ∩An|
|An| = 1.

Definition 19. Let Γ = (V,E) be a graph. The boundary of a subset A of the
vertex set V , denoted ∂(A), is the set of edges in E connecting a vertex in A to a
vertex outside of A.

Definition 20. Let Γ = (V, E) be a graph of uniformly bounded degree. The
Cheeger constant of Γ is the quantity

ch(Γ) = inf
{ |∂(A)|

|A| | A a finite subset of V

}

Definition 21. An graph Γ of uniformly bounded degree is amenable if its
Cheeger constant is 0.

Remark 5. Let G be a finitely generated infinite group with finite generating
set S and let Γ = Γ(G,S) be the Cayley graph of G with respect to S. Then G is
amenable if and only if Γ is amenable.

Example 13. The infinite cyclic group Z is amenable. Indeed, for the sequence
of intervals An = [1, n], n = 1, 2, . . . , and the symmetric generating set S = {±1},
we have

|∂(An)|
|An| =

4
n

which tends to 0 as n grows.

As was already mentioned all abelian groups are amenable. Indeed Følner crite-
rion can be used to prove the following more general result.

Theorem 7.2. Every finitely generated group of sub-exponential growth is
amenable.

Since all finitely generated abelian (virtually nilpotent) groups have polynomial
growth we obtain the following corollary.

Corollary 7.3. All virtually nilpotent groups are amenable.

7.2. Elementary classes

Theorem 7.4 (von Neumann [87]). The class of amenable groups AG is closed
under taking
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(i) subgroups,
(ii) homomorphic images,
(iii) extensions, and
(iv) directed unions.

Call the constructions (i)-(iv) above elementary constructions.

Definition 22. The class of elementary amenable groups, denoted EA, is the
smallest class of groups that contains all finite and all abelian groups, and is closed
under the elementary constructions.

Theorem 7.5. The free group F2 of rank 2 is not amenable.

The fact that F2 is not amenable can be easily proved by several different
arguments. In particular, one may use the doubling condition of Gromov.

Theorem 7.6 (Gromov doubling condition). Let Γ be a graph of uniformly
bounded degree. Then Γ is not amenable if and only if there exists a map f :
V (Γ) → V (Γ) such that the pre-image of every vertex has at least 2 elements and
the distance between any vertex and its image is uniformly bounded.

To see now that F2 = F (a, b) is not amenable just map every vertex ws±1 in the
Cayley graph of F2 with respect to S = {a, b} to w and leave 1 fixed. Under this
map, the distance between every vertex and its image is at most 1 and every vertex
has at least 3 pre-images.

Since F2 is not amenable and AG is closed under subgroups, no group that
contains F2 is amenable. Denote by NF the class of groups that do not contain a
copy of the free group F2 of rank 2 as a subgroup. We have

EA ⊆ AG ⊆ NF.

Mahlon Day asked in [24] if equality holds in either of the two inclusions above.
The question if AG = NF is sometimes referred to as von Neumann Problem. Chou
showed in 1980 that EA 6= NF by using the known fact that there exist infinite
torsion groups and proving the following result.

Theorem 7.7 (Chou [22]). No finitely generated torsion group is elementary
amenable. Therefore

EA 6= NF.

A negative solution to the von Neumann Problem was given by Ol’shanskii [73]
in 1980 and later by Adian [3].

Theorem 7.8 (Ol’shanskii [73]). There exist non-amenable groups that do not
contain free subgroups of rank 2. Therefore

AG 6= NF.

The examples Ol’shanskii used to show that AG ( NF are the Tarski monsters
he constructed earlier [75].
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Theorem 7.9 (Adian [3]). The free Burnside groups

B(m, n) = 〈 a1, . . . , am | xn = 1, for all x 〉,
for m ≥ 2 and odd n ≥ 665, are non-amenable.

Both Ol’shanskii and Adian used the following co-growth criterion of amenability
in their work.

Theorem 7.10 (Grigorchuk [37]). Let G be a m-generated group presented as
Fm/H where Fm = F (X) is the free group of rank m and H is a normal subgroup
of Fm. Denote by h(n) the number of words of length n over X∪X−1 that represent
elements in H. Then G is amenable if and only if

lim sup
n→∞

n
√

h(n) = 2m− 1.

We quote another result of Chou.

Theorem 7.11 (Chou [22]). No finitely generated group of intermediate growth
is elementary amenable.

This shows that any example of a group of intermediate growth would answer
the question if EG = AG negatively (since all such groups are amenable). Such an
example was provided in [38, 39].

Theorem 7.12. The group G is amenable but not elementary amenable group.
Thus

EA 6= AG.

In fact, the classes EA, AG and NF are distinct even in the context of finitely
presented groups.

Theorem 7.13 (Grigorhchuk [49]). The HNN extension

G̃ = 〈 G, t | at = aca, bt = d, ct = b, dt = c 〉
is a finitely presented amenable group that is not elementary amenable. Thus the
class AG \ EA contains finitely presented (torsion-by-cyclic) groups.

Theorem 7.14 (Ol’shanskii, Sapir [74]). The class NF \ AG contains finitely
presented (torsion-by-cyclic) groups.

Definition 23. The class of sub-exponentially amenable groups, denoted SA,
is the smallest class of groups that contains all finitely generated groups of sub-
exponential growth and is closed under the elementary constructions.

It is clear that

EA ⊆ SA ⊆ AG.

The group G is an example of a group in SA \ EA.
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Theorem 7.15. (a) (Grigorchuk,Żuk [52]) Basilica group is not sub-exponentially
amenable.

(b)(Bartholdi, Virág [16]) Basilica group is amenable.

Corollary 7.16.

EA ( SA ( AG ( NF.

We will only prove here that the Basilica group is not sub-exponentially amenable.
The proof follows the exposition in [52], but we first introduce the notion of
elementary classes.

Definition 24 (Chou [22], Osin [76]). Let C be a class of groups. For each
ordinal α define the elementary class Eα(C) as follows. For α = 0 define

E0(C) = C.
For non-limit ordinals of the form α = β + 1 define Eα(C) = Eβ+1(C) to be the
class of groups that can be obtained either as an extension of a group in Eβ(C) by a
group in C or as a directed union of a family of groups in Eβ(C). For limit ordinals
α define

Eα(C) =
⋃

β<α

Eβ(C).

Finally, define E(C) to be the union of Eα(C) taken over all ordinals.

Theorem 7.17 (Chou [22], Osin [76]). If C is closed under taking homomorphic
images and subgroups then E(C) is the smallest class of groups containing C that
is closed under all four elementary constructions (i)-(iv).

Moreover, all elementary classes Eα(C) are closed under taking homomorphic
images and subgroups.

This result is proved for the case of elementary amenable groups in [22] and in
general in [76].

Proof (Proof of Theorem 7.15(a)). Let SG be the class of groups of sub-exponential
growth and C be the closure of SG under taking subgroups and homomorphic
images. We show that B does not belong to Eα(C) for any cardinal α.

By way of contradiction, assume that α is the smallest ordinal such that B ∈
Eα(C). Since B has exponential growth, we have B 6∈ E0(C) and since B is finitely
generated it cannot be a directed union of its proper subgroups. Thus α = β + 1
and there exists a short exact sequence

1 → N → B → Q → 1

with N in Eβ(C). Since B is weakly branch over its commutator B′, according to
Theorem 5.3, there exists a level n such that

N ≥ (RiStB(Ln))′ ≥ (B′ × · · · × B′)′ ≥ B′′ × · · · × B′′.
Since the elementary class Eβ(C) is closed for subgroups and homomorphic images [76]
we conclude that B′′ is in Eβ(C). The following observations (made in [52]) can then
be used to show that B must also be in Eβ(C), leading to a contradiction.
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Namely, we have B′′ ≤ γ3(B) ≤ StB(L1) (here γ3(B) = [[B,B],B]), B′′ geometri-
cally decomposes as

B′′ = γ3(B)× γ3(B),

and we have the following projections

ϕ1(γ3(B)) = 〈γ3(B), (a2)b〉
ϕ1(〈γ3(B), (a2)b〉) = 〈γ3(B), (a2)b, b〉

ϕ0(〈γ3(B), (a2)b, b〉) = B.

In fact the four classes EA, SA, AG and NF are separated even within the class
of finitely presented groups, since there exists an HNN-extension

B̃ = 〈 B, t | at = b, bt = a2 〉
= 〈 a, t | [[a, at], at] = 1, att = a2 〉

of B that is finitely presented and amenable.
The group B̃ has a balanced presentation on 2 generators and 2 relations, just as

Thompson group

F = 〈 a, b | baa = bab, baaa = babb 〉.
While it is known that F is in NF it is a long standing question if F is amenable.

Question 3. Is Thompson group F amenable?

We observe that F cannot be realized as a group of k-ary rooted tree automor-
phisms for any finite k, since F is not residually finite (the commutator of F is not
trivial and is contained in all normal subgroups of F ). However, F can be realized as
a group of homeomorphisms of the boundary ∂T of the binary rooted tree. Moreover
the action of F on ∂T can be given by a finite asynchronous automaton [43].

7.3. Tarski numbers

Definition 25. A finitely generated group G has a paradoxical decomposition
if there exist a decomposition

G = A1 ∪ · · · ∪Am ∪B1 ∪ · · · ∪Bn,

of G into a disjoint union of m + n nonempty sets (with m,n ≥ 1) and there exist
elements ai, i = 1, . . . ,m, and bj , j = 1, . . . , n, in G such that

G = a1A1 ∪ · · · ∪ amAm = b1B1 ∪ · · · ∪ bnBn.

The smallest m + n in a paradoxical decomposition of G is called the Tarski
number of G. Groups that have no paradoxical decomposition have infinite Tarski
number.

Denote the Tarski number of a group G by τ(G). The Tarski number of any group
cannot be 3 or less. A proof of the following result of Tarski is provided in [89].
Another proof, based on Hall-Radon matching theorem, is provided in [19].
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Theorem 7.18 (Tarski). A finitely generated group G is amenable if and only
if it has a paradoxical decomposition.

Theorem 7.19. A group G contains a copy of the free group F2 if and only if
its Tarski number is 4.

Theorem 7.20 (Ceccherini-Silberstein, Grigorchuk, de la Harpe [19]). (a) There
exists a 2-generated non-amenable torsion-free group G whose Tarski number sat-
isfies

5 ≤ τ(G) ≤ 34.

(b) For m ≥ 2 and odd n ≥ 665, the Tarski number of the free Burnside group
B(m,n) satisfies the inequalities

5 ≤ τ(B(m,n)) ≤ 14.

7.4. Other topics related to amenability

A large class of automaton groups in NF was constructed by Sidki. For a k-ary
tree automorphism g define αg(n) (see [81]), called the activity number at level
n, to be the number of nontrivial sections at level n, n = 0, 1, 2, . . . . If a k-ary
tree automorphism is generated by a state of a finite automaton, then the growth
of αg is either polynomial or exponential. Denote by Polk the set of k-ary tree
automorphisms g for which αg grows polynomially. This set forms a subgroup of
Aut(T (k)).

Theorem 7.21 (Sidki [81]). The group Polk does not contain free subgroups
of rank 2, for any finite k ≥ 2.

It is easy to check if the growth of αs is exponential or polynomial for a state s
of a finite automaton A. Each state t of A can be classified as active or non-active
depending on whether πt is non-trivial or trivial, respectively. The activity number
αs(n) is equal to the number of paths in the directed graph representing A starting
at s and ending in an active state. A simple criterion, due to Ufnarovskĭı [85], may
be used to see that a k-ary automaton group G(A) is in Polk if and only if every
state of the automaton A appears as a vertex in at most one directed cycle from
which an active state can be reached.

Definition 26. An automaton A is bounded if all of its states have bounded
activity growth.

Example 14. All the states in the automaton generating Basilica group (see
Example 2) have bounded activity growth. In fact, it is clear that αa(n), αb(n) ≤ 1
for any n. Thus Basilica group is generated by a bounded automaton.

Similarly, the activity growth of all the states generating G is bounded.
On the other hand, the activity growth of every nontrivial state generating H(4)

is exponential (the two loops at each non-trivial state in the automaton in Figure 9
provide exponentially many paths leading to an active state).
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Theorem 7.22 (Bartholdi, Kaimanovich, Nekrashevych, Virág [5]). All groups
generated by bounded automata are amenable.

The proof of the above result is based on self-similar random walks techniques
developed by Bartholdi and Virág in [16], “Münchausen trick” of Kaimanovich [58]
and embedding techniques of Brunner, Nekrashevych and Sidki reducing the prob-
lem, for each arity k, to a specific self-similar automaton group, called the mother
group.

Greenleaf [34] asked if non-amenable groups can have amenable actions. An
action of G on X is amenable if X admits a G-invariant mean. A group has the
property ANA if it is non-amenable but admits a faithful transitive amenable action.
It is shown in [86] that F2 has the property ANA. On the other hand, it is known
that groups with Kazhdan Property (T) never have the property ANA.

Theorem 7.23 (Grigorchuk, Nekrashevych, [35]). Every finitely generated,
residually finite, non-amenable group embeds into a finitely generated, residually
finite, non-amenable group that has faithful, transitive, amenable actions.

Groups with the property ANA and other related properties were also studied
by Monod and Glasner in [32], where many new amenable actions of non-amenable
groups are introduced.

7.5. Problems

Problem 16 ([19]). (a) What is the range of Tarski numbers?
(b) Give an example of a non-amenable group with explicitly determined Tarski

number different from 4.

Problem 17. Is Polk amenable?

Problem 18. Are there hereditarily just infinite groups that are amenable but
not elementary amenable?

Problem 19. Are there non-amenable branch groups in NF?

Problem 20. Are there non-amenable automaton groups that do not contain
the free group F2 of rank 2?

8. Schreier graphs related to self-similar groups

Let G be a finitely generated spherically transitive group of k-ary automorphisms,
ξ be a ray in ∂T and, for n ≥ 0, ξn be the unique level n vertex on ξ. In other words,
ξ is an infinite word over X and, for n ≥ 0, ξn is its prefix of length n. Further, let
Pn be the stabilizer Pn = Pξn = StG(ξn) and P be the stabilizer P = Pξ = StG(ξ).
The sequence of subgroups {Pn}∞n=0 is decreasing to P = ∩∞n=0Pn.

For a fixed symmetric generating set S the Schreier graph Γn = Γn(G,Pn, S) is
the graph whose vertices are the left cosets of Pn and in which, for each pair of a
coset gPn and a generator s in S, there is an edge from gPn to sgPn labeled by s.
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Since the action of G is spherically transitive the graph Γn, for n ≥ 0, is connected
graph on kn vertices that is isomorphic (independently of ξ) to the Schreier graph
of the action of G on level n. The vertices of the Schreier graph of the action at
level n are the vertices at level n and, for each vertex u and a generator s, there is
an edge from u to s(u) labeled by s. The isomorphism between the two graphs is
given by gPξn

↔ u if and only if g(ξn) = u.
On the other hand, since the group G is countable and ∂T is not, the action of

G on ∂T is not transitive and the Schreier graph Γξ is isomorphic to the connected
component of the Schreier graph of the action of G on ∂T representing the G orbit
of the ray ξ.

The following proposition is rather obvious in the light of the fact that tree
automorphisms preserve prefixes.

Proposition 8.1. For all n ≥ 0, the map Γn+1 → Γn given by

wx 7→ w

is a k-fold graph covering. The map Γ → Γn given by

ζ 7→ ζn,

where ζ is an infinite word in the G orbit of ξ and, for n ≥ 0, ζn is the prefix of ζ
of length n, is also a graph covering.

Example 15. (Schreier graphs of H(3)) Let G = H(3). The Schreier graph
Γ3 = Γ000 corresponding to the action of H(3) at level 3 is given in Figure 19.

The graphs Γn, as n grows, look more and more like the Sierpiński gasket (see
Figure 15). We will see that this is not a random phenomenon and the reason for
this is that the Sierpiński gasket is the Julia set of the map f : z → z̄2− 16

27z̄ , whose
iterated monodromy group is exactly H(3).

We offer two recursive ways to build the graph Γn+1 from Γn. Both are based on
the similarity between these graphs.

The graph Γ0 corresponding to the action at the root is given by

∅
c a

b

For n ≥ 0, in order to build Γn+1, first build 3 copies of Γn, denoted by Γn,0, Γn,1

and Γn,2. The copy Γn,x differs from Γn only by the fact that each vertex label u in
Γn is replaced by ux in Γn,x. To get Γn+1 delete, for each pair x, y ∈ X3, x 6= y, the
loops at znx and zny in Γn,x and Γn,y, respectively, and replace them by a single
edge labeled by axy connecting znx and zny (here z denotes the third letter in X3

different from both x and y).
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Figure 19. The Schreier graph of H(3) at level 3

The second recursive way to build Γn+1 from Γn is by graph substitution. The
axiom is the graph describing Γ0 corresponding to level 0 and the rules are

1u

a

ªª
ªª

ªª
ªª

ªª

u 7→

0u
b

2u

c

5555555555

u
axy

v 7→ zu
axy

zv

for each vertex and each edge in Γn. Given these rules Γn+1 is built from Γn by
replacing each occurrence of a vertex u in Γn by a triangle according to the first
rule and replacing each occurrence of a labeled edge in Γn by a labeled edge given
by the second rule connecting the indicated vertices in Γn+1 (again, here z denotes
the third letter in X3 different from both x and y).
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Example 16. (Schreier graphs of G) The Schreier graphs of G corresponding
to the first 3 levels are given in Figure 20

0b, c, d
a

1 b, c, d

10b, c, d
a

00
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b
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Figure 20. The Schreier graphs of G corresponding to levels 1, 2 and 3

The graphs Γn, n ≥ 1, can be obtained by graph substitution as follows. The
axiom is the graph Γ1 and the rules are

u
a

v 7→ 1u
a

0u

d

b

c
0v

d

a
1v

u
b

v 7→ 1u
d

1v

u
c

v 7→ 1u
b

1v

u
d

v 7→ 1u
c

1v

Another description of Γn+1 in terms of Γn is as follows. Build two copies Γn,0

and Γn,1 of Γn by adding 0 and 1, respectively, on the right of each vertex label in
Γn. If n = 3m+1 delete the loops labeled by b and c at 1n−100 and 1n−101 in Γn,0

and Γn,1 and replace them by two edges labeled by b and c connecting 1n−100 and
1n−101. In a similar manner, if n = 3m + 2 replace the loops labeled by b and d by
two edges labeled by b and d connecting 1n−100 and 1n−101 and if n = 3m do the
same with the loops labeled by c and d.

Example 17. (The Schreier graphs of B) The Schreier graph Γ5 of B is given
in Figure 21 (no loops are drawn on any vertex) The resemblance of the Schreier
graphs of B to the Julia set of the polynomial z 7→ z2 − 1 (see Figure 4) is due to
the fact that IMG(z 7→ z2 − 1) = B.

8.1. Contracting actions and limit spaces

The results in this subsection touch on the phenomenon that Schreier graphs
of many self-similar groups exhibit self-similarity features. In particular, when the
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Figure 21. Schreier graphs of Basilica group B at level 5

group in question happens to be the iterated monodromy group of a post-critically
finite rational map f on Ĉ then the Schreier graphs approximate the Julia set of f .

Definition 27. A self-similar group G, generated by a finite generating set S,
is contracting, if there exists a constant C ≥ 0 and integer n ≥ 1 such that, for all
elements g in G with |g| ≥ C and all their level n sections gu, u ∈ Ln,

|gu| < |g|.

We note that all contracting groups are automaton groups. Indeed the above
definition implies that the set of sections of every element in G is finite. Therefore
one can easily define a finite automaton for each generator in S. Because of the
self-similarity, the group generated by all the states in these automata is still just
G.

We also note that the question whether a self-similar finitely generated group
is contracting or not does not depend on the chosen generating set, i.e., being a
contracting self-similar group is property of the group and not of its Cayley graph.

Denote by X−ω the space of words over X that are infinite to the left. This space
is canonically homeomorphic to ∂T .

Definition 28. Let G be a finitely generated self-similar contracting group.
Define a relation of asymptotic equivalence ³ on X−ω by

. . . x3x2x1 ³ . . . y3y2y1

if and only if there exists a sequence {gn}∞n=0 of elements in G taking only finitely
many different values in G such that, for n ≥ 0,

gn(xn . . . x1) = yn . . . y1.

The limit space of G, denoted JG, is the space X−ω/³.

The following proposition shows that the Schreier graphs Γn(G,S) approximate
the limit space JG.
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Proposition 8.2. Let G be a finitely generated contracting self-similar group.
Then

. . . x3x2x1 ³ . . . y3y2y1

if and only if there exists a constant C ≥ 0 such that, for all n ≥ 0, the distance
between xn . . . x1 and yn . . . y1 in Γn(G,S) is no greater than C.

Recall that the Julia set of a post-critically finite rational map f on Ĉ is the
closure of the set of repelling cycles of f .

Theorem 8.3 (Nekrashevych). Let f be a post-critically finite rational map
on Ĉ. Then the action of IMG(f) is contracting and the limit space JIMG(f) is
homeomorphic to the Julia set of f .

Thus the similarities between Schreier graphs of some self-similar groups and Julia
sets of some post-critically finite rational maps that we already observed (compare
Figure 15 and Figure 19, as well as Figure 4 and Figure 21) is due to the fact that
the group G defining the Schreier graphs is also the iterated monodromy group of
the corresponding map.

8.2. Cayley and Schreier spectra

Recall that, given a graph Γ, one can define a Markov operator M acting on the
Hilbert space `2(Γ, deg) of square integrable functions with weight determined by
the vertex degrees by

Mf(x) =
1

deg(x)

∑
y∼x

f(y),

where the sum is taken over all neighbors of x. The Markov operator M is a self-
adjoint operator of norm ≤ 1. If Γ is m-regular (i.e. all vertex degrees are equal
to m) then M is a multiple of the adjacency operator (or matrix) usually used in
discrete analysis. The operator M corresponds to the simple random walk on Γ in
which the random walker is moving from a vertex x to any of its neighbors with
equal probability. Spectrum of the graph Γ is the spectrum of the corresponding
Markov operator M . To each vertex one can associate the spectral measure µv,
whose moments coincide with the corresponding n-step return probabilities pn

v,v =
〈Mnδv, δv〉 =

∫1

−1
λndµv(λ), for n = 0, 1, 2, . . . . If Γ is vertex transitive then µv

does not depend on v. This is the case, for example, when Γ is the Cayley graph
of a group with respect to some finite system of generators. When we speak of
a spectrum of a group we mean the spectrum of the Cayley graph with respect
to some fixed finite symmetric system of generators. By Cayley spectrum of an
automaton group G = G(A) we mean the spectrum of the Cayley graph of G with
respect to the standard generating set S ∪ S−1, where S is the set of states of A,
and by Cayley spectral measure µA we mean the spectral measure of G.

It is quite difficult problem to study the spectrum of non-abelian groups because
of a lack of well developed theory of representations of such groups. Many funda-
mental problems of mathematics have interpretations that relate them to particular
questions about spectra and spectral properties. For instance, an example of a
torsion free group with a gap in the spectrum (for some system of generators)
would provide a counterexample to the famous Kadison-Kaplansky Conjecture on
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Idempotents [59] (and consequently to Baum-Connes [23] and Novikov Conjec-
ture [31]).

Groups generated by finite automata (or realizations of known groups by finite
automata) lead to solution of difficult problems through methods and ideas based on
self-similarity. The original ideas go back to the paper [4] where the first examples of
regular graphs with Cantor spectra were given. The realization of the lamplighter
group L2 = (Z/2Z) o Z as automaton group was used in [51] to calculate the
spectrum of L2, which turned out to be the first example of a group with pure
point spectrum. It also led to a counterexample to the Strong Atiyah Conjecture
on L2-Betti numbers.

Theorem 8.4 (Grigorchuk, Linell, Schick, Żuk [50]). There exists a 7-dimensional
manifold M such that all torsion elements in the fundamental group G = π(M)
have order dividing 2, but for which the second L2-Betti number is 7

3 .

Another way to attach a spectrum to a self-similar group G generated by a finite
symmetric set S is as follows. Consider the Schreier graph Γξ = Γ(G,Pξ, S). The
graph Γξ depends on ξ but in case of a spherically transitive action of G on T all
graphs Γξ are locally isomorphic and the spectrum (as a set) does not depend on
ξ. In such a situation we call the spectrum of the graph Γξ the Schreier spectrum
of G and denote it by spec(Γ).

In some cases the Schreier spectrum coincides with the Cayley spectrum and
such cases are of special interest since it is usually easier to calculate the Schreier
spectrum. For instance this happens whenever Pξ is trivial or cyclic (as happened
for the lamplighter group [51]).

We note that the Schreier graphs Γξ may be far from vertex transitive (and may
even have trivial automorphism group as in the case of G). Therefore one has to
pay attention to the possibility of having spectral measures µv depending on v.
There is hope that all µv would at least be in the same measure class, but there
are no results in this direction. The so called KNS (Kesten - von Neumann - Serre)
spectral measure ν appears in the study of µv, as introduced in [4] and studied
further in different situations in [51, 53, 83].

Definition 29. Let G be a self-similar group of k-ary tree automorphisms
generated by a symmetric set S and let ξ be a point on the boundary ∂T . For an
interval I in [−1, 1] define the KNS spectral measure by

ν(I) = lim
n→∞

#n(I)
kn

,

where #n(I) denotes the number of eigenvalues of Γn in the interval I.

At the moment there are more complete calculations involving the Schreier
spectrum than the Cayley spectrum. We provide the full description in case of
G, the Gupta-Sidki 3 group and H(3). The calculations are based on the following
result.
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Theorem 8.5 (Bartholdi, Grigorchuk [4]). Let either the Schreier graph Γ =
Γ(G, ξ, S) or the parabolic subgroup Pξ be amenable. Then

spec(Γ) =
∞⋃

n=0

spec(Γn).

Theorem 8.6 (Bartholdi, Grigorhuk [4]). (a) The n-th level spectrum spec(Γn)
of G with respect to {a, b, c, d} is, as a set, equal to

{
1±

√
5 + 4 cos θ | θ ∈ 2πZ

2n

}
\ {0,−2}.

The Schreier spectrum of G is equal to

[−2, 0] ∪ [2, 4].

(b) The Schreier spectrum of the Gupta-Sidki 3-group G with respect to {a, a−1, b, b−1},
given by

a = (012)(1, 1, 1)

b = (a, a−1, b)

is equal to the closure of the set




4,
−2,
1,

1±
√

9±3
2 ,

1±
√

9±√45±4·3
2 ,

1±
√

9±
√

45±4·√45±4·3
2 ,

. . .





.

The spectrum is a Cantor set symmetric with respect to 1.

Theorem 8.7 (Grigorchuk, Šunić [48]). The n-th level spectrum of H(3) with
respect to {a, b, c}, as a set, has 3 · 2n−1 − 1 elements and is equal to

{3} ∪
n−1⋃

i=0

f−i(0) ∪
n−2⋃

j=0

f−j(−2),

where f is the polynomial function f(x) = x2 − x− 3.

The multiplicity of the 2i level n eigenvalues in f−i(0), i = 0, . . . , n−1, is 3n−1−i+3
2

and the multiplicity of the 2j eigenvalues in f−j(−2), j = 0, . . . , n− 2, is 3n−1−i−1
2 .

The Schreier spectrum of H(3), as a set, is equal to

{3} ∪
∞⋃

i=0

f−i{0,−2} =
∞⋃

i=0

f−i(0).

It consists of the set of isolated points I =
⋃∞

i=0 f−i(0) and its set of accumulation
points J , which is the Julia set of the polynomial f(x) = x2−x−3 and is a Cantor
set.
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The KNS spectral measure is discrete and concentrated on the the set of eigen-
values in ∪∞i=0f

−i{0,−2}. The KNS measure of the eigenvalues in f−i{0,−2} is
1

6·3i , i = 0, 1, . . . .

The spectra of Γn are calculated by using operator recursion induced by the
self-similarity of the group in question. We illustrate this approach in the case of
H(3).

The action of H(3) on level n of the ternary tree induces permutational represen-
tations of dimension 3n, recursively defined by

a0 = b0 = c0 = [1]

an+1 =




0 1 0
1 0 0
0 0 an




bn+1 =




0 0 1
0 bn 0
1 0 0




cn+1 =




cn 0 0
0 0 1
0 1 0


 ,

where 0 and 1 are the zero and the identity matrix, respectively, of size 3n × 3n.
The matrix ∆n = an + bn + cn is the adjacency matrix of Γn and it satisfies the

recursive relation

∆0 = [3]

∆n+1 =




cn 1 1
1 bn 1
1 1 an




For n ≥ 1 and real numbers x and y define ∆n(x, y) to be the 3n × 3n matrix
given by

∆n(x, y) =




c− x y y
y b− x y
y y a− x


 .

Let Dn(x, y) = det(∆n(x, y)). We first find the set of points in the plane for
which the matrix Dn(x, y) is not invertible. Call this set the auxiliary spectrum.
The spectrum we are interested in is the intersection of the auxiliary spectrum with
the line y = 1.
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We first determine a recursive formula for Dn(x, y). The matrix

∆n(x, y) =




c− x 0 0 y 0 0 y 0 0
0 −x 1 0 y 0 0 y 0
0 1 −x 0 0 y 0 0 y
y 0 0 −x 0 1 y 0 0
0 y 0 0 b− x 0 0 y 0
0 0 y 1 0 −x 0 0 y
y 0 0 y 0 0 −x 1 0
0 y 0 0 y 0 1 −x 0
0 0 y 0 0 y 0 0 a− x




is row/column equivalent to



c− x′ y′ y′ 0 0 0 0 0 0
y′ b− x′ y′ 0 0 0 0 0 0
y′ y′ a− x′ 0 0 0 0 0 0
0 0 0 P4 0 0 0 0 0
0 0 0 0 P5 0 0 0 0
0 0 0 0 0 P6 0 0 0
0 0 0 0 0 0 y 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




,

where

x′ =
x4 − x3 − x2 + x + (x2 − x3)y + (2x− 3x2)y2 + xy3 + 2y4

(x− 1− y)(x2 − 1 + y − y2)
,

y′ =
y2(x− 1 + y)

(x− 1− y)(x2 − 1 + y − y2)
.

and

P4P5P6y = (x2 − (1 + y)2)3
n−2

(x2 − 1 + y − y2)2·3
n−2

.

Direct calculation shows that

D1(x, y) = −(x− 1− 2y)(x− 1 + y)2

and, for n ≥ 2,

Dn(x, y) = (x2 − (1 + y)2)3
n−2

(x2 − 1 + y − y2)2·3
n−2

Dn−1(F (x, y)),

where F (x, y) is the two-dimensional rational map given by F (x, y) = (x′, y′). Define
a transformation Ψ : R2 → R by

Ψ(x, y) =
x2 − 1− xy − 2y2

y

and a transformation f : R→ R by

f(x) = x2 − x− 3.

It is easy to check that

Ψ(F (x, y)) = f(Ψ(x, y)),
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i.e., the diagram

R2 F //

Ψ
²²

R2

Ψ
²²

R
f

// R

commutes. Thus the two-dimensional rational map F is semi-conjugate, in a non-
trivial way, to the one-dimensional map f and this is precisely what makes all
calculations possible.

For n ≥ 2, the auxiliary spectrum consists of 3 lines and 3 · 2n−2 − 2 hyperbolas.
For example, for n = 5 the auxiliary spectrum is given in Figure 22.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 22. The auxiliary spectrum of Γ5 for H(3)
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8.3. Problems

Problem 21 ([43]). (a) Does there exist an algorithm that, given a finite
automaton A, and a recursively defined ray ξ, decides if the parabolic subgroup
Pξ of G(A) is trivial?

(b) Does there exist an algorithm that, given a finite automaton A, decides if
there exists a parabolic subgroup Pξ in G(A) that is trivial?

(c) Does there exist an algorithm that, given a finite automaton A and a recur-
sively defined ray ξ, decides if Γ has polynomial growth?

Problem 22. Describe the possible types of growth of the Schreier graph Γ for
automaton groups.

Problem 23 (Nekrashevych [71]). Are all contracting groups amenable?
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14. Laurent Bartholdi and Zoran Šuniḱ. On the word and period growth of some groups of tree
automorphisms. Comm. Algebra, 29(11):4923–4964, 2001.
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MA, 2000.
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