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CNRS, Ecole Normale Supérieure de Lyon
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Abstract

We observe that the spectral measure of the Markov operator de-
pends continuously on the graph in the space of graphs with uni-
formly bounded degree. We investigate the behaviour of the largest
eigenvalue and the density of eigenvalues for infinite families of finite
graphs. The relations to the theorems of Alon-Boppana and Green-
berg are indicated.

1 Introduction

The theory of the spectrum of the Markov (or Laplace) operator on graphs
and groups is an important part of the theory of Markov processes. It is
related to many topics in the theory of random walks on groups and graphs,
abstract harmonic analysis, the theory of operator algebras, K-theory etc.

0The authors acknowledge support from ”Fonds National Suisse de la Recherche Sci-
entifique”. The first author acknowledges support from ”Russian Foundation for Funda-
mental Research” (grant 96-01-00974).
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The spectral radius, spectrum and the spectral measure of the Markov
operator on the homogeneous tree Tk of degree k was computed by Kesten
in [12]. The number 2

√
k−1
k

, the value of the spectral radius for this graph,
plays an important role in the theory.

First of all there is a large class of infinite regular graphs of degree k with
the same value of the spectral radius as was first observed in [6]. These are
graphs with cogrowth beween 1 and

√
k − 1. (In [12] and [6] the case when

k is even is considered. But the same arguments work for odd k if we keep
in mind the spherical homogeneity of the simple random walk on a group
ZZ2 ∗ . . . ∗ ZZ2).

The second place where these numbers appear is the theory of Ramanujan
graphs (see [14], [16], [20] and [23]).

The third place is the theory of the largest eigenvalue λ1, not equal to
1, of the Markov operator on finite graphs. In particular, the theorem of
Alon-Boppana claims:

Theorem 1 (Alon-Boppana) Let {Xn,k}∞n=1 be a sequence of k-regular,
finite, connected graphs where k is fixed and the number of vertices of Xn,k

tends to infinity. Then

lim inf
n→∞

λ1(Xn,k) ≥
2
√

k − 1

k
.

In this paper we will clarify and simplify some considerations related to
this kind of problem. Another goal is to consider the problem of approxima-
tion of the spectrum of the Markov operator on infinite graphs by the spectra
of operators on the sequence of finite graphs which approximate the given
graph. For this purpose we introduce the compact topology on the space of
graphs with uniformly bounded degree (which generalizes the topology in-
troduced in [8]) and observe that the spectral measure (a measure on [−1, 1])
depends continuously on the graph in this space. More precisely in Section 3
we will show:

Theorem 2 The spectral measure is a continuous (measure valued) function
on the space of marked graphs.

The most regular case to which we can apply our results is the case of
Cayley graphs; Let Fk be the free group on k generators. Let Hn be a
sequence of normal subgroups in Fk such that Hn+1 ⊂ Hn for every n ∈ IN.

2



Let H =
⋂

Hn. Then the Cayley graphs of Fk/Hn converge to the Cayley
graph Fk/H (for generators we choose the images of generators of Fk).

Some versions of convergence of graphs and corresponding limit theorems
for spectral measures were considered in [4] and [18] (the latter paper is also
a good survey on spectra of infinite graphs). The idea of approximation of an
infinite graph by finite graphs is presented also in [14] and other books and
articles. It comes from the group theory where the corresponding property is
called residual finiteness. But in contrast to the group case where not every
finitely generated group is residually finite every infinite regular graph can
be approximated by finite regular graphs (see Proposition 1 below).

We hope that the approximation method may help to compute the spec-
trum (and even the spectral measure) of the Markov operator for some in-
teresting infinite residually finite groups (for instance for the groups of inter-
mediate growth constructed in [7] and [8]).

2 The space of graphs with uniformly bounded

degree

In this paper we consider only locally finite, connected, non-oriented graphs
which we identify with their geometric realization, i.e. simplicial complexes.
This makes the concept of covering of the graph clear. Moreover, our graphs
will be supplied with a natural distance metric.

Theorems 2 and 3 (see below) also have analogues in the cases of oriented
graphs and coloured graphs when the number of colours is finite. This is
important for constructions with Cayley graphs of finitely generated groups.

So let X = (VX , EX) be a connected graph and VX , EX its set of vertices
and edges respectively. Let the distance between two vertices va 6= vb ∈ VX

be the minimal number of edges needed to connect them, i.e.

dist(va, vb) = min{n; ∃v0, . . . , vn ∈ VX , v0 = va, vn = vb,

(vi, vi+1) ∈ EX for 0 ≤ i ≤ n − 1}.

Let us consider a family {(Xn, vn)} of marked graphs, i.e. graphs with
chosen vertices vn ∈ Xn.

On the space of marked graphs there is a metric Dist defined as follows

Dist((X1, v1), (X2, v2)) = inf
{

1

n + 1
; BX1(v1, n) is isometric to BX2(v2, n)

}
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where BX(v, n) is the ball of radius n in X centered on v.
For a sequence of marked graphs (Xn, vn) we say that (X, v) is the limit

graph if
lim

n→∞
Dist((X, v), (Xn, vn)) = 0.

The limit graph is unique up to the isometry.
We will consider locally finite graphs, i.e. the degree deg(v) of each vertex

v is finite and we will always assume that the graphs are connected. Now we
prove:

Lemma 1 Let {(Xn, vn)}∞n=1 be a sequence of marked graphs whose degree
is uniformly bounded, i.e. there exists k > 0, such that deg(Xn) ≤ k for all
n ∈ IN. Then there exists a subsequence {(Xni

, vni
)}∞i=1 which converges to

some marked graph (X, v).

Proof Because the degrees of the graphs are uniformly bounded, we can
use the diagonal argument. �

Lemma 1 has as a corollary the following theorem:

Theorem 3 The space of marked graphs of uniformly bounded degree is com-
pact.

Remark The analogous statement for the case of the space of Cayley graphs
of groups with a fixed set of generators was mentioned in [8].

Proposition 1 For any regular marked graph (X, v) there exists a sequence
of finite marked regular graphs (Xn, vn) converging to (X, v).

Proof First of all let us suppose that the degree of X is even and equal
to 2n. Then X can be represented as the Schreier graph of Fn/H where Fn

is a free group on n generators, H some subgroup of Fn and as generators
for Fn/H we take the images of standard generators of Fn. We can suppose
that the vertex v in X is the image of the identity element e in Fn. Now
H =

⋃∞
i=1 Hi, where Hi is a sequence of subgroups of Fn such that for every i

we have Hi ⊂ Hi+1 and Hi is finitely generated. By a theorem of M. Hall [9]
every finitely generated subgroup of Hi can be represented as the intersection
⋂∞

j=1 Hij where Hij are subgroups of Fn of finite index. By a diagonal process
we can choose a sequence {Hikjk

}∞k=1 such that the finite marked Schreier’s
graphs {Fn/Hikjk

, e}∞k=1 converge to (X, v).
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In the case when the degree of X is odd, the proof is similar but we have
to use the version of Hall’s theorem for ZZ2 ∗ . . . ∗ ZZ2. �
Remark There are other more direct proofs of Proposition 1. One of them
was indicated to us by L. Bartholdi.

3 Continuity of the spectral measure of the

Markov operator on graphs

On the locally finite, connected graph X = (VX , EX) we can consider a
random walk operator M acting on functions f ∈ l2(X, deg) as follows:

Mf(v) =
1

deg(v)

∑

w∼v

f(w),

where w ∼ v means that w is a neighbor of v. This is a self-adjoint operator
on l2(X, deg).

This random walk operator is related to the following simple random
walk on X: starting at vertex v, we choose uniformly at random one of its
neighbors w and then go to w.

By the random walk operator on marked graphs we will mean the random
walk operator on the corresponding non-marked graph.

Let ρ(M) be the spectral radius of M . Then it is known and easy to see
that

lim
n→∞

√

[2n]p2n(v, v) = ρ(M) = ||M ||l2(X,deg)

for any vertex v ∈ X, where p2n(v, v) is the probability of going from v to v
in 2n steps. In particular ||M || = ρ(M) ≤ 1 and ρ(M) is in the spectrum of
M . If X is finite then ||M || = 1 and 1 is the largest eigenvalue of M . For a
finite connected graph X let λ1(X) denote the second eigenvalue after 1 in
a natural decreasing ordering of points in the spectrum of M .

Lemma 2 Let f : X1 → X2 be a covering between two graphs X1 and X2.
Then

ρ(X2) ≥ ρ(X1).

Proof By definition of the cover, different loops in X1 are projected onto
different loops in X2. The loops in X1 which start and finish in v are projected
onto loops in X2 which start and finish in f(v). Thus

pn(v, v) ≤ pn(f(v), f(v)),
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which implies that ρ(X1) ≤ ρ(X2). �
Since M is a bounded (||M || ≤ 1) and self-adjoint operator, it has the

spectral decomposition

M =
∫ 1

−1
λE(λ),

where E is the spectral measure. This spectral measure is defined on Borel
subsets of the interval [−1, 1] and takes the values in projections on the
Hilbert space l2(X, deg). The matrix µX of measures µX

xy for vertices x, y ∈ X
can be associated with E as follows:

µX
xy(B) = 〈E(B)δx, δy〉,

where B is a Borel subset of [−1, 1] and δx is the function which equals 1 at
x and 0 elsewhere.

Now, in general, λ ∈ Sp(M) if and only if for every ε > 0 there exists
µX

xy such that |µX
xy((λ− ε, λ + ε))| > 0. But we also have the following result

(see [12]):

Lemma 3 λ ∈ Sp(M) if and only if for every ε > 0 there exists x ∈ X such
that µX

xx((λ − ε, λ + ε)) > 0.

Proof We need only show that if, for B = (λ−ε, λ+ε), we have |µX
xy(B)| > 0

then µX
xx(B) > 0. As E(B) is a projection, one has

0 < (µX
xy(B))2 = 〈E(B)δx, δy〉2 ≤ 〈E(B)δx, E(B)δx〉〈δy, δy〉

= 〈E(B)δx, δx〉deg(y) = µX
xx(B)deg(y),

which ends the proof. �
Our main tool will be the weak convergence of the measures µXn

vnvn
to the

measure µX
vv (provided that the sequence of marked graphs (Xn, vn) converges

to the marked graph (X, v)), i.e.

lim
n→∞

∫ 1

−1
fµXn

vnvn
=

∫ 1

−1
fµX

vv

for any f ∈ C[−1, 1]. The weak convergence implies (see for instance [3])
that for any open interval B ⊂ [−1, 1]:

lim inf
n→∞

µXn

vnvn
(B) ≥ µX

vv(B).
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Lemma 4 Let us suppose that the sequence of marked graphs (Xn, vn) con-
verges to the marked graph (X, v). Then the measures µXn

vnvn
converge weakly

to the measure µX
vv.

Proof We are going to prove that the moments of the measures µXn
vnvn

converge to the moments of the measure µX
vv. As it is easy to see, in our

situation this implies weak convergence of corresponding measures (see for
example [3]). The l-th moment of the measure µY

yy for a graph Y and y ∈ Y
is given by

(µY
yy)

(l) =
∫ 1

−1
λlµY

yy(λ) =
∫ 1

−1
λl〈E(λ)δy, δy〉 = 〈M lδy, δy〉.

Thus the l-th moment of the measure µY
yy is equal to the probability of going

from y to y in l steps. But for n sufficiently large, the balls BXn
(vn, l) and

BX(v, l) are isometric and the l-th moment of the measure µXn
vnvn

is the same
as the l-th moment of the measure µX

vv.
This ends the proof of Lemma 4. �

Proof of Theorem 2 This is a consequence of Lemma 4 and the fact that
the space of graphs that we are considering is a metric space. �

4 Some applications

Proposition 2 Let {(Xn, vn)}∞n=1 be a sequence of marked graphs which con-
verges to the marked graph (X, v). Then for every α in the spectrum of the
random walk operator MX on X, i.e. α ∈ Sp(MX), and for every ε > 0,
there exists N ∈ IN such that for n ≥ N there is always a spectral value of
MXn

which is in the interval (α − ε, α + ε).

Proof Let x be any vertex in X, and let d be its distance from v ∈ X, i.e.
d = distX(v, x). For n sufficiently large the balls BXn

(vn, d) and BX(v, d) are
isometric. Let xn be the image of x in Xn. Now, for any λ ∈ Sp(MX) and
for every ε > 0, there exists x ∈ X such that

µX
xx((α − ε, α + ε)) = c > 0.

This means that for any ε′ > 0 and n sufficiently large, by Lemma 4 we have

µXn

xnxn
((α − ε, α + ε)) ≥ c − ε′,
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which ends the proof of Proposition 2. �
We can prove the following proposition:

Proposition 3 Let {(Xn, vn)}∞n=1 be a sequence of finite marked graphs con-
vergent to the marked graph (X, v). If the number of vertices of the graph Xn

tends to infinity, then
lim inf
n→∞

λ1(Xn) ≥ ρ(X).

Proof As ρ(X) ∈ Sp(MX), Proposition 3 follows immediately from Propo-
sition 2 in the case where ρ(X) < 1. In the case ρ(X) = 1 we need the
following:

Lemma 5 Let X be an infinite, connected graph such that ρ(X) = 1. Then
1 is not an isolated eigenvalue in Sp(MX).

Proof If 1 were an isolated eigenvalue then there would be an eigenfunction
in l2(X, deg) with the eigenvalue 1. Because the l2 norm of this function is
finite, it has to attain either a maximum or minimum. But as it corresponds
to the eigenvalue 1, it attains the extremum also on the neighbours of the
vertex on which it attains the extremum. And as the graph is connected, this
implies that this eigenfunction is constant. However, as the graph is infinite
this means that l2 norm is infinite and we obtain a contradiction. �

Thus if ρ(X) = 1, Proposition 2 and Lemma 5 imply that for n sufficiently
large there are eigenvalues of Xn different from 1 but arbitrarily close to 1.
This ends the proof of Proposition 3. �

As a corollary we obtain the following generalization of Alon-Boppana’s
theorem:

Theorem 4 Let {Xn}∞n=1 be a sequence of finite connected graphs. If the
degree of each graph (which does not have to be regular) is bounded by k and
the number of vertices of Xn tends to infinity, then

lim inf
n→∞

λ1(Xn) ≥ 2
√

k − 1

k
.

Proof Suppose this is not true, i.e.

lim inf
n→∞

λ1(Xn) <
2
√

k − 1

k
.
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Let vn be any vertex in the graph Xn. By Lemma 2, there exists a sub-
sequence of marked graphs {(Xni

, vni
)}∞i=1 convergent to the marked graph

(X, v). The degree of the graph X is bounded by k. So one knows (see [6]
for the case when X is a k-regular graph and see [24] for the general case)
that

ρ(X) ≥ 2
√

k − 1

k
.

Thus by Proposition 3 we have

lim inf
i→∞

λ1(Xni
) ≥ 2

√
k − 1

k

which gives a contradiction. �
If α ∈ Sp(MX) is not an isolated eigenvalue in Sp(MX) then Proposition 2

has as a corollary the following proposition:

Proposition 4 Let {(Xn, vn)}∞n=1 be a sequence of marked graphs which con-
verges to the marked graph (X, v). If α ∈ Sp(MX) is not an isolated point in
Sp(MX) then for every ε > 0:

#{λ ∈ Sp(MXn
); λ ∈ (α − ε, α + ε)} →n→∞ ∞.

Below is one more example (besides the one given in Lemma 5) of infinite
graphs for which the spectral radius is not an isolated point in the spectrum:

Proposition 5 If there exists a vertex in X whose orbit under the group
Aut(X) of automorphisms of X is infinite then ρ(X) is not an isolated point
in the spectrum Sp(MX).

Proof If ρ(X) were an isolated eigenvalue then there would be an eigenfunc-
tion f in l2(X, deg) corresponding to ρ(X). As the norm of M is attained
on f and because for any g ∈ l2(X, deg) one has ‖Mg‖ ≤ ‖M |g|‖, we can
suppose that f is positive. The function f must be strictly positive, because
if it were zero somewhere, it would be zero at its neighbours, and as X is
connected this gives a contradiction. Now, using the group Aut(X) we can
translate the function f and obtain a new eigenfunction f ′. As there is a
vertex whose orbit under Aut(X) is infinite, we can obtain the eigenfunction
f ′ which is different from f . Now, let us consider the function F on X:

F (x) = max{f(x), f ′(x)}.
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For F one has
MF (x) ≥ ρ(X)F (x)

for each x ∈ X and F belongs to l2(X, deg). As f and f ′ have the same l2

norms, there exist v and w in X such that f(v) > f ′(v) and f(w) < f ′(w).
There is a vertex z ∈ X such that the strict inequality

MF (z) > ρ(X)F (z), (1)

holds. Indeed, if MF (v) = ρ(X)F (v) then f(u) ≥ f ′(u) for all vertices u
at distance 1 from v. If MF (u) = ρ(X)F (u) for every such vertex then
f(t) ≥ f ′(t) for all vertices t at distance 2 from v, etc. As f(w) < f ′(w) and
X is connected, there must be a vertex z such that the inequality (1) holds.

But this means that ||M || > ρ(X) which gives a contradiction. �
Now we will consider graphs with a finite number of orbits, i.e. graphs

X such that #(X/Aut(X)) is finite.

Theorem 5 Let {(Xn, vn)}∞n=1 be a sequence of finite marked graphs with a
degree uniformly bounded by k and such that #(Xn/Aut(Xn)) ≤ K for each
graph Xn. If (X, v) is the limit graph for the sequence {(Xn, vn)}∞n=1 then for
any open interval B ⊂ [−1, 1] and any vertex v ∈ X we have:

lim inf
n→∞

# {λ ∈ Sp(MXn
); λ ∈ B}

#Xn

≥ (µX
vv(B))2

K · k2
,

where the eigenvalues are counted with multiplicities.

Proof We will prove Theorem 5 in the case where K = 1. The proof in
the general case is similar. Thus we will consider homogenous graphs, i.e.
graphs X such that #(X/Aut(X)) = 1. For a homogenous graph, the spectral
measure µX

xx does not depend on x ∈ X and we will write for simplicity µX .
Also, if we consider a sequence of marked homogenous graphs {(Xn, vn)}∞n=1

convergent to the marked graph (X, v), the limit space does not depend on
the sequence vn and the limit graph is homogenous. We can suppose that
the degree of each graph Xn is k.

Let d(n) = # {λ ∈ Sp(MXn
); λ ∈ B}.

For λi ∈ Sp(MXn
), let Eλi

be the eigenspace in l2(Xn, deg) corresponding
to λi. The l2(Xn, deg) admits the following decomposition

l2(Xn, deg) =
#Xn
⊕

i=1

Eλi
,
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where we suppose Eλi
to be one-dimensional and thus we take as many one-

dimensional eigenspaces as multiplicity indicates. So

Eλi
= {λfi; λ ∈ IR, ||fi||l2(Xn,deg) = 1}.

Let us choose a vertex x ∈ Xn. Then we have

δx =
#Xn
∑

i=1

aifi,

where ai are real numbers such that
∑#Xn

i=1 a2
i = ||δx||22 = k. And by definition

of the projection E(B)

E(B)δx =
d(n)
∑

j=1

aijfij .

Because of the weak convergence of the measures µXn to the measure µX

(Lemma 4), for any ε > 0 there exists N ∈ IN, such that for n > N we have

µX(B) − ε ≤ µXn(B).

By definition we have
µXn(B) = µXn

xx (B),

where x is any vertex in Xn. So

µX(B) − ε ≤ µXn(B) = µXn

xx (B) = 〈E(B)δx, δx〉

=

〈d(n)
∑

j=1

aijfij , δx

〉

=
d(n)
∑

j=1

aijfij (x)k

≤

√

√

√

√

√

d(n)
∑

j=1

a2
ij

√

√

√

√

√

d(n)
∑

j=1

f 2
ij
(x)k ≤ ||δx||2

√

√

√

√

√

d(n)
∑

j=1

f 2
ij
(x)k

=

√

√

√

√

√

d(n)
∑

j=1

f 2
ij
(x)k

√
k.

Thus

(µX(B) − ε)2 ≤
d(n)
∑

i=1

f 2
ij
(x)k3.
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This gives us

#Xn(µX(B) − ε)2 =
∑

x∈Xn

(µX(B) − ε)2

≤
∑

x∈Xn

d(n)
∑

j=1

f 2
ij
(x)k3

=
d(n)
∑

j=1





∑

x∈Xn

f 2
ij
(x)k



 k2

= d(n)k2,

which ends the proof. �
For future reference, we notice that the above proof shows:

∑

x∈Xn

(

µXn

xx (B)
)2 ≤ d(n)k2. (2)

We are going to prove two statements analogous to Proposition 3 and
Theorem 5 but in a slightly different situation.

Proposition 6 Let {Xn}∞n=1 be a sequence of finite graphs such that

1. each graph Xn is covered by a graph X and

2. the number of vertices of Xn tends to infinity, i.e. #Xn →n→∞ ∞.

Then
lim inf
n→∞

λ1(Xn) ≥ ρ(X).

Proof Suppose that this is not true, i.e. there exists ε > 0 and a subsequence
{Xni

}∞i=1 such that
λ1(Xni

) ≤ ρ(X) − ε.

Because X covers a finite graph, the degree of graphs {Xn}∞n=1 is uniformly
bounded. Let us choose a vertex v in X, and let vn be its image in Xn. By
Lemma 1 there exists a subsequence {Xnij

, vnij
}∞j=1 of marked graphs which

is convergent to a marked graph (X ′, v′). Now we prove:

Lemma 6 The limit graph X ′ is covered by the graph X.
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Proof We will construct a covering of X ′ by X such that v is mapped onto
v′. For m > 0, let δ(m) be a constant such that the ball BXniδ(m)

(vniδ(m)
, m) is

isometric to the ball BX′(v′, m). Let pniδ(m)
: X → Xniδ(m)

be a cover mapping

between the graph X and the graph Xniδ(m)
such that pniδ(m)

(v) = vniδ(m)
. By

definition of the covering, it follows that the ball BX(v, m) covers the ball
BXniδ(m)

(vniδ(m)
, m). As the latter is isometric to BX′(v′, m) let

fm : BX(v, m) → BX′(v′, m)

be a covering of BX′(v′, m) by BX(v, m) such that fm(v) = v′.
By the diagonal argument, there exists a subsequence {fmj

}∞j=1 of cov-
erings such that fmj

, restricted to BX(v, mj′) for mj′ ≤ mj, coincides with
fmj′

, i.e.
fmj

|BX(v,m
j′ )

= fmj′
.

Thus there exists a covering

f : X → X ′,

such that f |BX(v,mj) = fmj
, which ends the proof of Lemma 6. �

Thus by Lemma 2
ρ(X ′) ≥ ρ(X).

Hence Proposition 3 gives us the desired contradiction. This ends the proof
of Proposition 6. �

Theorem 6 Let {Xn}∞n=1 be a sequence of finite connected graphs with uni-
formly bounded degree, such that the number of vertices of Xn tends to infin-
ity.

1. Then there exists a subsequence {Xni
}∞i=1 and a graph X ′ such that for

any open interval B ⊂ [−1, 1] and any vertex x′ ∈ X ′ there exists a
constant cx′ > 0 such that

lim inf
n→∞

#{λ ∈ Sp(MXni
); λ ∈ B}

#Xn

≥ cx′ · (µX′

x′x′(B))2.

2. If the graphs Xn are covered by a graph X such that there exists a group
Γ acting cocompactly on X then X ′ can be chosen in such a way that
X covers X ′.
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Proof As the graphs Xn have uniformly bounded degree, there exist positive
integers N1, . . . , NR, . . . with the following property:

Property (P) Let us consider any graph Xn. Then up to the isometry there
are at most NR different balls of radius R in Xn.

Let {BXn

R }∞R=1 be any sequence of sets of balls in Xn of radius R with the
following properties:

1. For fixed n and R the balls in BXn

R are isometric to each other;

2. If B(v, R) ∈ BXn

R then B(v, R − 1) ∈ BXn

R−1.

Now we prove:

Lemma 7 It is possible to find a sequence {BXn

R }∞R=1 in such a way that

#BXn

R ≥ #Xn · cR,

where cR = (N1 · . . . · NR)−1.

Proof We construct the sequence {BXn

R }∞R=1 by induction:
1. There are #Xn balls of radius 1 in Xn. According to Property (P)

there are at least #Xn ·(N1)−1 among these balls which are isometric to each
other. So let BXn

1 be any set of cardinality at least #Xn · (N1)−1 consisting
of balls of radius 1 which are isometric to each other.

2. Suppose that we constructed the sets BXn
1 , . . . , BXn

R−1 with the desired
properties. Let us consider the balls of radius R with the same centers as the
balls in BXn

R−1. According to Property (P) there are at least #BXn

R−1 · (NR)−1

among these balls which are isometric to each other and let BXn

R be any set
of them. Thus by induction

#BXn

R ≥ #BXn

R−1 · (NR)−1 ≥ #Xn · cR−1 · (NR)−1 = #Xn · cR,

which ends the proof of Lemma 7. �
Because the graphs Xn are finite, for each graph Xn there exists an integer

R(n) such that for R > R(n) one has

BXn

R = BXn

R(n).

So for each Xn there exists a vertex vn ∈ Xn such that for every R there is at
least one ball in BXn

R centered on vn. By Lemma 1 there exists a subsequence
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of marked graphs {(Xnj
, vnj

)}∞j=1 which is convergent to some marked graph
(X ′, v). We will show that the sequence of graphs {Xnj

}∞j=1 and the graph
X ′ have the properties stated in Theorem 6.

Let C
(

BXn

R

)

be the set of centers of the balls in BXn

R , i.e.

C
(

BXn

R

)

=
{

v ∈ Xn; B(v, R) ∈ BXn

R

}

.

We need the following:

Lemma 8 For any interval B ⊂ [−1, 1] and ε > 0 there exist integers N > 0

and R > 0 such that for any nj > N and for any vertex x ∈ C(B
Xnj

R ), we
have

µ
Xnj
xx (B) ≥ µX′

vv (B) − ε.

Proof Suppose this is not true, i.e. there exist an interval B ⊂ [−1, 1],
ε > 0, a subsequence of graphs {Xnji

}∞i=1, a sequence of integers {Ri}∞i=1

(limi→∞ Ri = ∞) and a sequence of vertices xi ∈ Xnji
(xi ∈ C

(

B
Xnji

Ri

)

) such

that
µ

Xnji
xixi (B) < µX′

vv (B) − ε. (3)

By construction, the sequence of marked graphs {(Xnji
, xi)}∞i=1 is convergent

to the marked graph (X ′, v). So by Lemma 4 there exists an integer i such
that

µ
Xnji
xixi (B) ≥ µX′

vv (B) − ε,

which contradicts (3). �
We are now in a position to prove the first statement of Theorem 6. We

will prove this for x′ = v and later remark that the same proof works for
other vertices. First of all if µX′

vv (B) = 0 there is nothing to prove.
Let us consider an open interval B ⊂ [−1, 1] such that µX′

vv (B) > 0. Let
ε = 1

2
µX′

vv (B). By Lemma 8 there exist positive integers N and R such that

for nj > N and for any vertex x ∈ C
(

B
Xnj

R

)

we have:

µ
Xnj
xx (B) ≥ 1

2
µX′

vv (B).

Let k = deg(x) (there exists a positive integer N ′ such that for nj > N ′

the degree of vertices in C
(

B
Xnj

R

)

is the same for all Xnj
). Then for nj >

max{N, N ′} by Lemma 7 and (2) we have:
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#Xnj

(

1

2
µX′

vv (B)
)2

≤ (cR)−1#B
Xnj

R ·
(

1

2
µX′

vv (B)
)2

= (cR)−1
∑

x∈C

(

B
Xnj
R

)

(

1

2
µX′

vv (B)
)2

≤ (cR)−1
∑

x∈C

(

B
Xnj
R

)

(

µ
Xnj
xx (B)

)2

≤ (cR)−1d(nj)k
2.

As cR and k are constants which do not depend on Xnj
, this ends the proof

of Theorem 6 for x′ = v. In the case when x′ 6= v the proof is almost the
same, because for R sufficently large, x′ is in the ball B(v, R) and therefore
in our considerations we can replace v by x′.

Now we prove the second statement in Theorem 6. Because Γ \ X is
finite, there exists a vertex w ∈ X and a subsequence of marked graphs
{(Xnji

, vnji
)}∞i=1 such that a covering of Xnji

by X maps w onto vnji
. As

the sequence {(Xnji
, vnji

)}∞i=1 is convergent to the marked graph (X ′, v), by
Lemma 6 we have that X ′ is covered by X. �

Theorem 6 has the following corollary:

Corollary 1 Let X be an infinite connected graph and Xn the family of finite
connected graphs covered by X. (Where here we mean that for each Xn there
exists a group Γn acting on X such that Γn \X = Xn.) Then for every ε > 0
there exists c = c(X, ε), 0 < c < 1, such that at least c#Xn eigenvalues λ of
Xn satisfy λ ≥ ρ(X) − ε. In particular for any r ∈ IN we have

lim inf
n→∞

λr(Xn) ≥ ρ(X),

where λ1(Xn) ≥ λ2(Xn) ≥ . . . are the eigenvalues of MXn
listed in ordered

way.

The first statement of Corollary 1 was proved by Greenberg [5] (see
also [14]) and the second statement was proved by Burger [2]. In the case
when X is a regular tree Corollary 1 was observed by Serre [21]. The ex-
position of all statements contained in Corollary 1 can be also found in [13]
(Theorem 13 in Chapter 9).
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Proof of Corollary 1 Suppose this is not true, i.e. there exists ε > 0 and
a subsequence of graphs {Xni

}∞i=1 such that

lim
n→∞

#{λ ∈ Sp(MXni
); λ ≥ ρ(X) − ε}

#Xni

= 0. (4)

Clearly #Xn tends to infinity in this case. By Theorem 6 there exist a
subsequence {Xnij

}∞j=1 and a graph X ′ which is covered by the graph X,

such that for any vertex x′ ∈ X ′ there is a constant cx′ > 0 such that

lim inf
j→∞

#{λ ∈ Sp(MXnij
); λ ≥ ρ(X ′) − ε}

#Xnij

≥ cx′µX′

x′x′ ((ρ(X ′) − ε, 1]) .

As ρ(X ′) belongs to Sp(MX′), by Lemma 3 there exists x′ ∈ X ′ such that
µX′

x′x′((ρ(X ′) − ε, 1]) = c > 0. By Lemma 2, ρ(X ′) ≥ ρ(X). Thus

lim inf
j→∞

#{λ ∈ Sp(MXnij
); λ ≥ ρ(X) − ε}

#Xnij

> 0,

which contradicts (4). �

5 Conclusions

Let {Xn}∞n=1 be a sequence of finite graphs covered by a graph X or con-
verging to X. According to our results there is an extremal case when
λ1(Xn) ≤ ρ(X) for all n and this leads to the following definitions, the
first of which generalizes the ones given in [5] and [14]:

Definition 1 Let {Xn} be an infinite family of finite graphs, covered by an
infinite graph X. The family {Xn} is called X-Ramanujan if every eigen-
value not equal to 1 of the simple random walk on Xn is less than the spectral
radius ρ(X) of the simple random walk on X, i.e.

λ1(Xn) ≤ ρ(X),

for each graph Xn.

Definition 2 Let {(Xn, vn)}∞n=1 be a sequence of finite marked graphs, con-
vergent to the infinite marked graph (X, v). The sequence {(Xn, vn)}∞n=1 is
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called (X, v)-Ramanujan if every eigenvalue not equal to 1 of the simple
random walk on Xn is less than the spectral radius ρ(X) of the simple ran-
dom walk on X, i.e.

λ1(Xn) ≤ ρ(X),

for each graph Xn.

Ramanujan graphs were defined in [16], [17] and implicitly in [11] as finite

k-regular graphs with λ1 ≤ 2
√

k−1
k

. For a given k of the form k = q +1 where
q is a power of a prime number, the constructions of the infinite families
of Ramanujan graphs covered by a regular tree (namely a Cayley graph of
a free group of corresponding rank) were constructed by Lubotzky, Phillips
and Sarnak in [16] and by Margulis in [17].

It would be interesting to find other examples of a graph X (not a tree)

with the spectral radius 2
√

k−1
k

and a sequence Xn which is X-Ramanujan or
at least (X, v)-Ramanujan for some v ∈ X.

In [15] an example of an infinite non-regular tree X was constructed such
that X admits infinitely many finite quotients and none of its quotients is
X-Ramanujan.
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