Complexity Theory and Geometry*

J.M. Landsberg
Texas A\&M University

[^0]
History: 1950's, Soviet Union- Is brute force search avoidable?

A traveling saleswoman visits 20 cities: Moscow, Leningrad, Stalingrad,...
Is there a route less than $50,000 \mathrm{~km}$?
Only known method: essentially brute force search
Number of paths to check grows exponentially.
Can routes be found more efficiently?
Cause for hope: it is very easy to check if a proposed route is less then $50,000 \mathrm{~km}$.

1970's: Cook, Karp, Levin: Precise conjecture

\mathbf{P} : the class of problems that are "easy" to solve (e.g. determining existence of a perfect matching in a bipartite graph)

NP: the class of problems that are "easy" to verify (e.g., the traveling saleswoman)

Conjecture
$\mathbf{P} \neq \mathbf{N P}$.

Late 1970's: Valiant, computer science \rightsquigarrow algebra

Problem: count the number of perfect matchings of a bipartite graph.

Figure: Amy is allergic to γ rapes, Bob insists on β anana, Carol dislikes α pple.

Count by computing a polynomial. Let $X=\left(x_{j}^{i}\right)$: incidence matrix of the graph, where $x_{j}^{i}=1$ if \exists edge between vertices i and j and is otherwise zero.

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Late 1970's: Valiant, computer science \rightsquigarrow algebra

perfect matching \leftrightarrow each row paired with a column such that corresponding matrix entry is 1
i.e., identity matrix or permutation of its columns.
\mathfrak{S}_{n} : permutations of $\{1, \ldots, n\}$.
The permanent of $X=\left(x_{j}^{i}\right)$ is

$$
\operatorname{perm}_{n}(X):=\sum_{\sigma \in \mathfrak{S}_{n}} x_{\sigma(1)}^{1} x_{\sigma(2)}^{2} \cdots x_{\sigma(n)}^{n}
$$

$\operatorname{perm}_{n}(X)=\#$ perfect matchings, e.g. perm $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)=1$

Late 1970's: Valiant, computer science \rightsquigarrow algebra

VNP: sequences of polynomials that are "easy" to write down.
For example, $\left(\right.$ perm $\left._{n}\right) \in \mathbf{V N P}$.
VP: sequences of polynomials that are "easy" to compute.
For example, $\left(\operatorname{det}_{n}\right) \in \mathbf{V P}$ (Gaussian elimination).

Conjecture (Valiant (1979))
$\mathbf{V P} \neq \mathbf{V N P}$.

Permanents via determinants

$$
\begin{gathered}
\operatorname{perm}_{m}(Y):=\sum_{\sigma \in \mathfrak{S}_{m}} y_{\sigma(1)}^{1} y_{\sigma(2)}^{2} \cdots y_{\sigma(m)}^{m} \\
\operatorname{det}_{n}(X):=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) x_{\sigma(1)}^{1} x_{\sigma(2)}^{2} \cdots x_{\sigma(n)}^{n}
\end{gathered}
$$

For example

$$
\operatorname{det}_{2}\left(\begin{array}{ll}
x_{1}^{1} & x_{2}^{1} \\
x_{1}^{2} & x_{2}^{2}
\end{array}\right)=x_{1}^{1} x_{2}^{2}-x_{1}^{1} x_{1}^{2}
$$

and

$$
\operatorname{perm}_{2}\left(\begin{array}{ll}
y_{1}^{1} & y_{2}^{1} \\
y_{1}^{2} & y_{2}^{2}
\end{array}\right)=y_{1}^{1} y_{2}^{2}+y_{1}^{1} y_{1}^{2}=\operatorname{det}_{2}\left(\begin{array}{cc}
y_{1}^{1} & -y_{2}^{1} \\
y_{1}^{2} & y_{2}^{2}
\end{array}\right)
$$

Permanents via small determinants?

\operatorname{perm}_{3}(Y)=\operatorname{det}_{7}\left($$
\begin{array}{ccccccc}
0 & y_{1}^{1} & y_{1}^{2} & y_{1}^{3} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & y_{3}^{3} & y_{3}^{2} & 0 \\
0 & 0 & 1 & 0 & 0 & y_{3}^{1} & y_{3}^{3} \\
0 & 0 & 0 & 1 & y_{3}^{1} & 0 & y_{3}^{2} \\
y_{2}^{2} & 0 & 0 & 0 & 1 & 0 & 0 \\
y_{2}^{3} & 0 & 0 & 0 & 0 & 1 & 0 \\
y_{2}^{1} & 0 & 0 & 0 & 0 & 0 & 1
\end{array}
$$\right) .
\]

Question: Can every perm ${ }_{m}$ be expressed in this way for some n ? Valiant: Yes! In fact $n \sim 2^{m}$ works.

Conjecture (Valiant (1979))

Let $n(m)$ be a polynomial. $\forall m \gg 0, \nexists$ affine linear functions $x_{j}^{j}\left(y_{t}^{s}\right)$ with $\operatorname{perm}_{m}(Y)=\operatorname{det}_{n(m)}(X(Y))$.

Differential Geometry detour

Given a surface in 3 -space, its Gauss image in the two-sphere is the union of all unit normal vectors to the surface:

Differential Geometry detour

Can define the Gauss image without a distance function, via conormal lines.

Dimension of image still defined.

Classical Theorem: Surfaces with Gauss image a curve are:

- The union of tangent rays to a space curve.
- A generalized cone, i.e., the union of lines connecting a point to a plane curve. (Includes case of cylinders, where point is at infinity.)

Connection to complexity theory?

Gauss images are defined in higher dimensions.
The hypersurface

$$
\left\{\operatorname{det}_{n}(X)=0\right\} \subset\{n \times n \text { matrices }\}=\mathbb{C}^{n^{2}}
$$

has low dimensional Gauss image ($2 n-2 \mathrm{v}$. expected $n^{2}-2$).
Under substitution $X=X(Y)$, Gauss image stays degenerate.
Theorem (Mignon-Ressayre (2004))
If $n(m)<\frac{m^{2}}{2}$, then \nexists affine linear functions $x_{j}^{i}\left(y_{t}^{s}\right)$ such that $\operatorname{perm}_{m}(Y)=\operatorname{det}_{n}(X(Y))$.

Algebraic geometry: the study of zero sets of polynomials

Our situation: Polynomials on spaces of polynomials.
Let

$$
P\left(x_{1}, \ldots, x_{N}\right)=\sum_{1 \leq i_{1} \leq \cdots i_{d} \leq N} c_{i_{1}, \ldots, i_{d}} x_{i_{1}} \cdots x_{i_{d}}
$$

homogeneous, degree d in N variables;
Study polynomials on the coefficients $c_{i_{1}, \ldots, i_{d}}$.
These coefficients are coordinates on the vector space Sym $^{d} \mathbb{C}^{N}=\mathbb{C}\binom{N+d-1}{d}$.

Geometric Complexity Theory approach to Valiant's conjecture [Mulmuley-Sohoni (2001)]

Idea: Find a sequence of polynomials $\left\{P_{m}\right\}$ such that

- $P_{m}\left(q_{m}\right)=0$ for all polynomials

$$
q_{m}(Y)=\operatorname{det}_{n(m)}(X(Y))
$$

when $n(m)$ is a polynomial,

- $P_{m}\left(\right.$ perm $\left._{m}\right) \neq 0$.

Use representation theory (systematic study of symmetries via linear algebra) to find $\left\{P_{m}\right\}$.

Algebraic geometry

Theorem (L-Manivel-Ressayre (2013))
An explicit $\left\{P_{m}\right\} \rightsquigarrow$ strengthened Mignon-Ressayre Theorem.
Bonus! solved a classical problem: find defining equations for the variety of hypersurfaces with degenerate Gauss images (dual varieties).

A practical problem: efficient linear algebra

Standard algorithm for matrix multiplication, row-column:

$$
\left(\begin{array}{lll}
* & * & * \\
& &
\end{array}\right)\left(\begin{array}{ll}
* \\
* \\
*
\end{array}\right)=\left(\begin{array}{ll}
* \\
& \\
&
\end{array}\right)
$$

uses $O\left(n^{3}\right)$ arithmetic operations.
Strassen (1968) set out to prove this standard algorithm was indeed the best possible.

At least for 2×2 matrices.
He failed.

Strassen's algorithm

Let A, B be 2×2 matrices $A=\left(\begin{array}{ll}a_{1}^{1} & a_{2}^{1} \\ a_{1}^{2} & a_{2}^{2}\end{array}\right), \quad B=\left(\begin{array}{ll}b_{1}^{1} & b_{2}^{1} \\ b_{1}^{2} & b_{2}^{2}\end{array}\right)$. Set

$$
\begin{aligned}
I & =\left(a_{1}^{1}+a_{2}^{2}\right)\left(b_{1}^{1}+b_{2}^{2}\right), \\
I I & =\left(a_{1}^{2}+a_{2}^{2}\right) b_{1}^{1}, \\
I I I & =a_{1}^{1}\left(b_{2}^{1}-b_{2}^{2}\right) \\
I V & =a_{2}^{2}\left(-b_{1}^{1}+b_{1}^{2}\right) \\
V & =\left(a_{1}^{1}+a_{2}^{1}\right) b_{2}^{2} \\
V I & =\left(-a_{1}^{1}+a_{1}^{2}\right)\left(b_{1}^{1}+b_{2}^{1}\right), \\
V I I & =\left(a_{2}^{1}-a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right),
\end{aligned}
$$

If $C=A B$, then

$$
\begin{aligned}
& c_{1}^{1}=I+I V-V+V I I \\
& c_{1}^{2}=I I+I V \\
& c_{2}^{1}=I I I+V \\
& c_{2}^{2}=I+I I I-I I+V I
\end{aligned}
$$

Astounding conjecture

Iterate: $\rightsquigarrow 2^{k} \times 2^{k}$ matrices using $7^{k} \ll 8^{k}$ multiplications, and $n \times n$ matrices with $O\left(n^{2.81}\right)$ arithmetic operations.

Conjecture
For all $\epsilon>0, n \times n$ matrices can be multiplied using $O\left(n^{2+\epsilon}\right)$ arithmetic operations.
\rightsquigarrow asymptotically, multiplying matrices is nearly as easy as adding them!

How to disprove astounding conjecture via algebraic geometry?

Study polynomials on spaces of bilinear maps.
Set $N=n^{2}$.
Matrix multiplication is a bilinear map

$$
M_{\langle n\rangle}: \mathbb{C}^{N} \times \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}
$$

$\left\{\right.$ bilinear maps $\left.T: \mathbb{C}^{N} \times \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}\right\}$: vector space of $\operatorname{dim}=N^{3}$.
Idea: Look for polynomials P_{n} on $\mathbb{C}^{N^{3}}$ such that

- $P_{n}(T)=0 \forall T$ computable with $O(N)$ arithmetic operations, and
- $P_{n}\left(M_{\langle n\rangle}\right) \neq 0$.

How to disprove? - Precise formulation

$$
\begin{aligned}
M_{\langle 1\rangle}: \mathbb{C} \times \mathbb{C} & \rightarrow \mathbb{C} \\
(x, y) & \mapsto x y
\end{aligned}
$$

denotes scalar multiplication.
Set

$$
\begin{aligned}
M_{\langle 1\rangle}^{\oplus r}: \mathbb{C}^{r} \times \mathbb{C}^{r} & \rightarrow \mathbb{C}^{r} \\
\left(\left(x_{1}, \ldots, x_{r}\right),\left(y_{1}, \ldots, y_{r}\right)\right. & \mapsto\left(x_{1} y_{1}, \ldots, x_{r} y_{r}\right)
\end{aligned}
$$

\{bilinear maps computable with r scalar multiplications $=$ set of degenerations of $M_{\langle 1\rangle}^{\oplus r}$.
$=\operatorname{End}\left(\mathbb{C}^{r}\right) \times \operatorname{End}\left(\mathbb{C}^{r}\right) \times \operatorname{End}\left(\mathbb{C}^{r}\right) \cdot M_{\langle 1\rangle}^{\oplus r}$,
$=:$ Arith $_{r}$

How to disprove?- Precise formulation

$T: \mathbb{C}^{r} \times \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$ has tensor rank at most r if $T \in$ Arith $_{r}$, and write $\mathbf{R}(T) \leq r$.

Theorem (Strassen (1969))
$\mathbf{R}\left(M_{\langle n\rangle}\right)=O\left(n^{\tau}\right)$ if and only if $M_{\langle n\rangle}$ can be computed with $O\left(n^{\tau}\right)$ arithmetic operations.

How to prove the astounding conjecture?

Idea:Find collections $\left\{P_{j, n}\right\}$ such that

- $P_{j, n}\left(T_{n}\right)=0$ for all j if and only if $T_{n} \in \boldsymbol{A r i t h}_{O\left(n^{2+\epsilon}\right)}$
- Show $P_{j, n}\left(M_{\langle n\rangle}\right)=0$ for all j.

Problem: The zero set of all polynomials vanishing on

$$
S:=\{(z, w) \mid z=0, w \neq 0\} \subset \mathbb{C}^{2}
$$

is the line

$$
\{(z, w) \mid z=0\} \subset \mathbb{C}^{2}
$$

Good news: not a problem for matrix multiplication

For a set $X \subset \mathbb{C}^{N}$, let

$$
\bar{X}:=\left\{y \in \mathbb{C}^{N}|P(y)=0 \forall P \ni P|_{x \equiv 0\} \subset \mathbb{C}^{N}}\right.
$$

the Zariski closure of X.
Polynomials can only detect membership in $\overline{\text { Arith }_{r}} \subset \mathbb{C}^{r^{3}}$.
Arith $_{r} \subsetneq \overline{\text { Arith }_{r}}$.
$T \in \mathbb{C}^{r^{3}}$ has tensor border rank at most r if $T \in \overline{\text { Arith }_{r}}$.
Write $\underline{\mathbf{R}}(T) \leq r$.
Theorem (Bini (1980))
$\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right)=O\left(n^{\tau}\right)$ if and only if $M_{\langle n\rangle}$ can be computed with $O\left(n^{\tau}\right)$ arithmetic operations.

State of the art

- [Classical] $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right) \geq n^{2}$
- $\left[\right.$ Strassen (1983)] $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right) \geq \frac{3}{2} n^{2}$
- [Lickteig (1985)] $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right) \geq \frac{3}{2} n^{2}+\frac{n}{2}-1$
- [L-Ottaviani (2012)] $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right) \geq 2 n^{2}-n$

The classical result: proof by retreat to linear algebra

Write $A, B, C=\mathbb{C}^{r}$.
View a bilinear map

$$
\begin{aligned}
T: A \times B & \rightarrow C \\
(a, b) & \mapsto T(a, b)
\end{aligned}
$$

as a linear map

$$
\begin{aligned}
& T_{A}: A \rightarrow\{\text { linear maps } B \rightarrow C\} \\
& a \mapsto\{b \mapsto T(a, b)\}
\end{aligned}
$$

Then $\underline{\mathbf{R}}(T) \geq \operatorname{rank}\left(T_{A}\right)$.

Back to permanent v. determinant

Zariski closure is potentially serious difficulty:

Conjecture (Mulmuley (2014))

There are sequences in the closure of the degenerations of the determinant than are not in VP.

Algebraic geometry disadvantage: potentially wild sequences of polynomials.

Mignon-Ressayre: $n<\frac{m^{2}}{2} \Longrightarrow \operatorname{perm}_{m} \notin \operatorname{End}\left(\mathbb{C}^{n^{2}}\right) \cdot \operatorname{det}_{n}$
L-Manivel-Ressayre: $n<\frac{m^{2}}{2} \Longrightarrow \operatorname{perm}_{m} \notin \overline{\operatorname{End}\left(\mathbb{C}^{n^{2}}\right) \cdot \operatorname{det}_{n}}$

Algebraic geometry advantage

$$
\overline{\operatorname{End}\left(\mathbb{C}^{n^{2}}\right) \cdot \operatorname{det}_{n}}=\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}
$$

An orbit closure!

Peter-Weyl Theorem: In principle, modulo the boundary, representation theory describes the ideal of the orbit closure as a $G L_{n^{2}}$-module.
\rightsquigarrow interesting questions regarding Kronecker v. plethysm coefficients
\rightsquigarrow difficult extension problem.

Thank you for your attention

For more on tensors, their geometry and applications, resp. Gauss maps and local differential geometry:

Notes from a fall 2014 class on geometry and complexity theory at UC Berkeley/Simons Inst. Theoretical computing: www.math.tamu.edu/~jml/alltmp.pdf

A survey on GCT: www.math.tamu.edu/~jml/Lgctsurvey.pdf

[^0]: * color pictures by Jesko Hüttenhain

