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1. Introduction

The Phragmen-Lindelöf convexity principle allows one to produce a bound on an L-
function inside the critical strip by interpolating bounds outside but near the right and
left edges of the critical strip. The functional equation allows one to produce a bound on
the left edge using a bound on the right edge. However, for Dirichlet series with potentially
large coefficients, it is not trivial to bound the L-function on the right edge.

For example, consider a Maass form F on SLn(Z) that is an eigenfunction for the full
Hecke ring. By an integral representation involving Eisenstein series, one can construct
the Rankin-Selberg L-function L(F × F , s) (see (2.1) below) which is entire except for a
simple pole at s = 1, satisfies a functional equation under s → 1 − s, and has a degree n2

Euler product. Except for the notable case of n = 2, [R], this L-function is not known to
correspond to an automorphic form. The analytic properties of L(F × F , s) are crucial in
understanding the size of the Hecke eigenvalues of F .

Iwaniec [I] considered the case n = 2 and showed S(x) :=
∑

n≤x |λj(n)|2 � tεjx
1+ε, where

λj(n) are the Hecke eigenvalues of a Maass form uj with spectral parameter tj, and the
implied constant does not depend on tj. This strong bound is in spite of the fact that
we do not know the Ramanujan conjecture for Maass forms, and indeed the current best
bound is |λj(n)| � n7/64+ε [KS] . The wonderful idea in Iwaniec’s method is to deduce
a nonlinear recurrence for S(x) in the form S(x)2 � xε

∑
d≤x S(x2/d2), with an implied

constant independent of tj. For x large enough compared to tj one can use analytic properties
of the Rankin-Selberg L-function to deduce the desired bound, and the recurrence then
transfers this bound to smaller values of x. The multiplicativity of the Hecke eigenvalues
plays a vital role in the method. Iwaniec’s bound on S(x) then shows that L(uj × uj, s)
satisfies the convexity bound which we state in a slightly nontraditional way as L(uj ×
uj, 1 + δ + it)�δ,ε t

ε
j .

Molteni [M] generalized Iwaniec’s method and considered the more general problem of
bounding higher degree L-functions. He succeeded at giving the convexity bound for the
standard L-function on GLn but not for the Rankin-Selberg L-function except with an
additional hypothesis.

Brumley [B] later obtained convexity for GLn×GLn with n ≤ 4. Recently, Li [L] obtained
the convexity bound on GLn × GLn for any n; his lovely idea is to study the logarithmic
derivative of the L-function, and notice that for purposes of obtaining an upper bound the
zeros are harmless. This idea was initially developed by Soundararajan [S] inside the critical
strip where it is conditional on GRH. Li’s method is unconditional since the setting is to the
right of the critical strip where the Euler product converges absolutely.

For conceptual reasons, it is still interesting to understand if Iwaniec’s method can be
generalized to GLn × GLn, or if there is some barrier. Here we in fact confirm that the
method generalizes.
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Theorem 1.1. Fix n ≥ 2. Let F be a Maass form on SLn(Z) that is an eigenfunction for
the full Hecke ring with Laplace eigenvalue λF (∆). Then for any ε, δ > 0,

(1.1) L(F × F , 1 + δ + it)�δ,ε λF (∆)ε,

holds with an implied constant independent of F ; that is, the convexity bound holds.

In fact, we show an independently interesting bound which implies Theorem 1.1.

Theorem 1.2. For any ε > 0 there exists a constant C(ε) such that for any F as in Theorem
1.1 and any s > 1 + ε, the following holds

(1.2) L(F × F , s)2 ≤ C(ε)L(F × F , s− ε)

Note that L(F ×F , s) is nonnegative for all s > 1 since its Dirichlet series has nonnegative
coefficients. Hence |L(F ×F , σ+ it)| ≤ L(F ×F , σ) for σ > 1 and t ∈ R. This self-referential
bound could be considered the Dirichlet series analog of Iwaniec’s recursive bound on S(x).
However, we take the opportunity to point out a seemingly innocuous modification of S(x)
which simplifies Iwaniec’s argument. Let S∗(x) =

∑
m2n≤x |λj(n)|2. One can see that S∗(x) is

very natural since it is the summatory function for the Dirichlet series coefficients of L(uj ×
uj, s). Clearly S(x) ≤ S∗(x). Iwaniec’s recursive argument gives S∗(x)2 ≤ C(ε)xεS∗(x2)
which avoids the extra summation variable meaning that these coefficients have a nice closure
property under multiplication. This closure property holds for higher degree also which turns
out to be a consequence of well-known properties of Schur polynomials (see (2.10) below).
We observe that the coefficients of L(F, s) itself do not have this nice closure property.

To deduce Theorem 1.1 from Theorem 1.2, one begins with a bound of the form L(F ×
F , 1 + δ)�δ λF (∆)A for some large A independent of F . Then applying Theorem 1.2 with
ε = δ/2 effectively replaces A by A/2. By repeating this procedure we can make A arbitrarily
small. We also mention that it is easy to deduce the convexity bound on L(F1×F2, s) where
Fi is a Maass form on SLni

(Z) for ni = 1, 2 by Cauchy’s inequality.

Corollary 1.3. Let notation be as above and write L(F × F , s) =
∑∞

m=1 aF (m)m−s. Then

(1.3)
∑
m≤x

aF (m)� x1+ελF (∆)ε,

with an implied constant depending on ε > 0 only.

This follows from Theorem 1.1 by the standard contour integral method.

2. Background

By Definition 12.1.2 of [G], say, we have for s > 1

(2.1) L(F × F , s) = ζ(ns)
∑

m1,...,mn−1

|A(m1, . . . ,mn−1)|2

(mn−1
1 mn−2

2 . . .mn−1)s
,

where A(m1, . . . ,mn−1) are the Fourier coefficients of F , normalized so that A(1, . . . , 1) = 1.
The absolute convergence for Re(s) > 1 is ensured by Landau’s lemma and the fact that the
Rankin-Selberg L-function has an analytic continuation to C with a simple pole at s = 1
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only. Since the Hecke eigenvalues are multiplicative in the joint sense, we have by general
principles of multiplicative functions that

(2.2) L(F × F , s) =
∏
p

∞∑
k,k1,...,kn−1=0

|A(pk1 , . . . , pkn−1)|2

(ps)nk+k1(n−1)+k2(n−2)+···+kn−1
.

We find it convenient to work with the Schur polynomial representation for each Euler factor.
Goldfeld ([G] p.367) remarks that

(2.3) A(pk1 , pk2 , . . . , pkn−1) = Sk1,...,kn−1(αp,1, . . . , αp,n),

where Sk1,...,kn−1(x1, . . . , xn) is the Schur polynomial defined as follows
(2.4)

Sk1,...,kn−1(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

x
k1+k2+···+kn−1+n−1
1 . . . xk1+k2+···+kn−1+n−1

n

x
k1+k2+···+kn−2+n−2
1 . . . xk1+k2+···+kn−2+n−2

n
...

...
...

xk1+1
1 . . . xk1+1

n

1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣

xn−1
1 . . . xn−1

n

xn−2
1 . . . xn−2

n
...

...
...

x1 . . . xn
1 . . . 1

∣∣∣∣∣∣∣∣∣∣
,

and αp,1, . . . , αp,n are the Satake parameters defined by the Euler product formula

(2.5) L(F, s) =
∞∑
m=1

A(m, 1, . . . , 1)m−s =
∏
p

n∏
i=1

(1− αp,ip−s)−1.

To connect more easily to the literature on Schur polynomials we prefer to express things
in terms of Schur functions indexed by partitions (into at most n parts) λ = (λ1, λ2, . . . , λn)
with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Precisely, let

(2.6) sλ(x1, . . . , xn) =
|xλi+n−i
j |
|xn−ij |

,

where the notation indicates the determinant of the matrix with given i, j entry. We have

Lemma 2.1. Let F be a Hecke-Maass form for SLn(Z), and suppose s > 1. Then with
xp = p−s/2, we have

(2.7) L(F × F , s) =
∏
p

∑
λ

|sλ(xpαp,1, . . . , xpαp,n)|2.

Proof. Define λ = (λ1, . . . , λn) via

λ1 = k1 + k2 + · · ·+ kn−1 + k

λ2 = k1 + k2 + · · ·+ kn−2 + k
...

λn−1 = k1 + k

λn = k.

As k1, . . . , kn−1, k run over all nonnegative integers, λ runs over all partitions of integers with
at most n parts. Note that

(2.8) nk + k1(n− 1) + k2(n− 2) + · · ·+ kn−1 = λ1 + λ2 + · · ·+ λn,
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and so using standard properties of determinants,

(2.9)
Sk1,...,kn−1(αp,1, . . . , αp,n)

(ps/2)nk+k1(n−1)+···+kn−1
= (αp,1 . . . αp,n)−λnsλ(p

−s/2α1, . . . , p
−s/2αn).

With (2.2) and (2.3), this proves the result. �

The Schur polynomials form a natural basis for the vector space of degree d homogeneous
polynomials in n variables. In particular, we have

(2.10) sλsµ =
∑
ν

Nλµνsν ,

where ν runs over certain partitions with |ν| = |λ| + |µ| (everything with at most n parts),
and Nλµν is a nonnegative integer. The well-known Littlewood-Richardson rule gives a
combinatorial interpretation for Nλµν yet this description is rather involved.

Lemma 2.2. For n fixed, we have that
∑

ν Nλµν is bounded by a polynomial in λ and µ
(meaning, bounded by a polynomial in the components λi and µj). In particular, each Nλµν

is polynomially bounded by λ and µ and so is the number of ν on the right hand side of
(2.10) such that Nλµν is nonzero,

Proof. By A.30(ii) of [FH] we have

(2.11) sλ(1, 1, . . . , 1) =
∏

1≤i<j≤n

λi − λj + j − i
j − i

.

In particular, sν(1, . . . 1) ≥ 1 and so evaluating both sides of (2.10) at (1, . . . , 1), we have∑
ν Nλµν ≤ sλ(1, . . . , 1)sµ(1, . . . , 1). �

3. Proof of Theorem 1.2

Suppose that s > 1 + ε. Then by Lemma 2.1, we have

(3.1) L(F × F , s)2 =
∏
p

∑
λ

∑
µ

|sλ(xpαp,1, . . . , xpαp,n)sµ(xpαp,1, . . . , xpαp,n)|2.

By (2.10), we have

(3.2) L(F × F , s)2 =
∏
p

∑
λ

∑
µ

|
∑
ν

Nλµνsν(xpαp,1, . . . , xpαp,n)|2.

By Cauchy’s inequality and positivity, we have

(3.3) L(F × F , s)2 ≤
∏
p

∑
λ

∑
µ

∑
ν′

N2
λµν′

∑
ν:|ν|=|λ|+|µ|

|sν(xpαp,1, . . . , xpαp,n)|2.

Given a partition ν = (ν1, . . . , νn) with ν1 ≥ ν2 ≥ · · · ≥ νn, a crude counting argument
shows that the number of partitions λ, µ each of at most n parts such that |λ|+ |µ| = |ν| is
bounded by a polynomial in ν. This fact, together with Lemma 2.2 gives

(3.4) L(F × F , s)2 ≤
∏
p

∑
ν

Poly(ν)|sν(xpαp,1, . . . , xpαp,n)|2,
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where Poly(ν) is a polynomial in ν1, . . . , νn. One also observes directly that if ν = (0, . . . , 0)
then Poly(ν) = 1. Using (2.9) and changing variables back to k1, . . . , kn, we see that

(3.5) L(F × F , s)2 ≤
∏
p

∞∑
k,k1,...,kn−1=0

Poly(k, k1, . . . , kn−1)
|A(pk1 , . . . , pkn−1)|2

(ps)nk+k1(n−1)+k2(n−2)+···+kn−1
.

Now by borrowing ε from s, we have
(3.6)

L(F × F , s)2 ≤
∏
p

∞∑
k,k1,...,kn−1=0

Poly(k, k1, . . . , kn−1)

(pε)nk+k1(n−1)+k2(n−2)+···+kn−1

|A(pk1 , . . . , pkn−1)|2

(ps−ε)nk+k1(n−1)+k2(n−2)+···+kn−1
.

For each p, let Lp = (l, l1, . . . , ln−1) denote the index for which

(3.7) r(Lp) :=
Poly(l, l1, . . . , ln−1)

(pε)nl+l1(n−1)+l2(n−2)+···+ln−1

is maximized. Since the denominator has exponential growth, there are only finitely many p
such that this index is not (0, . . . , 0) in which case this ratio is 1 (it is vital this polynomial
takes the value 1 but of course this is easily achieved). Then a standard divisor function
bound shows that

∏
p r(Lp) ≤ C(ε) independently of F . Bounding the polynomial part by

r(Lp) and summing over the k’s finishes the proof of Theorem 1.2.
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