
Learning:
 

neuroscience 
and 

engineering applications
 or…

 a motivation for Steve’s talk

Tomaso

 

Poggio



Computational neuroscience 
may

 
just begin to understand what is going on 

in visual cortex 
from a computational point of view

�We have an algorithm that mimics the ability of people to 
recognize complex images but…

�…we have a model, not a theory: one motivation for Steve’s 
talk!
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� How then do the learning machines described by regularization compare with brains? One of 
the most obvious differences is the ability of people and animals to learn 
from very few examples.

� A comparison with real brains offers another,  related, challenge to learning theory. The  “learning 
algorithms” we have described in this paper correspond to one-layer architectures. Are 
hierarchical architectures with more layers justifiable in terms of learning 
theory?

� There may also be the more fundamental issue of sample complexity. ... Thus our ability of 
learning from just a few examples, and its limitations, may be related to the hierarchical 
architecture of cortex. 

�Why hierarchies?

Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale
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Primer on the Brain 



Human Brain
~  1011

 

neurons
 

(1 million flies ☺)
~  1014- 1015

 

synapses
~  5 billion neurons in human visual cortex

Neuron
Fundamental space dimension: fine dendrites : 0.1 µ

 Fundamental time length : 1 msec

A complex electro-chemical computing machinery



Neuron basics

spikes

INPUT    
= pulses

COMPUTATION

OUTPUT 
= pulses
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How does the brain recognize objects?
 Consider how well we do in the first 100 

msec
 

(no eye movements)




What do we know about cortex and 
recognition?

Simon Thorpe
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[Thorpe and Fabre-Thorpe, 2001]

Consider feedforward processing in the 
ventral stream (we neglect feedback for now)



A computational model
(which can be simulated on a computer)



o
 
It is in the family of “Hubel-Wiesel”

 
models

 (Hubel & Wiesel, 1959; Fukushima,
 

1980; Oram
 & Perrett, 1993, Wallis & Rolls, 1997; 

Riesenhuber & Poggio, 1999; Thorpe; Mel; 
Koerner…)

o
 
It is the most quantitative and faithful to 
known biology (though many details/facts are 
unknown or still to be incorporated)

A model: feedforward
Æ accounting only for immediate perception



Quant model derived from anatomy+physiology data in V1, V4, IT, PFC 
(millions of artificial neurons simulated on a computer) 

Serre, Kouh, Cadieu, Knoblich, Poggio, 2005; 
Serre, Oliva, Poggio, PNAS, 2007 …



¾ Generic dictionary of shape 
components (from V1 to IT) 
� Unsupervised learning during a 

developmental-like stage 
learning dictionaries of 
“templates” at different S levels

¾ Task-specific circuits     
(from IT to PFC)
� Supervised learning

Layers of cortical processing units



SCP model
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17 spatial frequencies

S1 and C1 units



Partial list of detailed ‘predictions” of  
physiology and psychophysics data

¾ MAX in V1 (Lampl et al, 2004) and V4 (Gawne et al, 2002)
¾ Tow-spot reverse correlation in V1 (Livingstone and Conway, 2003; Serre et 

al, 2005)
¾ Tuning for boundary conformation (Cadieu et al., 2007, Pasupathy & Connor, 

2001) in V4
¾ Tuning for gratings in V4 (Gallant et al, 1996; Serre et al, 2005)
¾ Tuning for two-bar stimuli in V4 (Reynolds et al, 1999; Serre et al, 2005)
¾ Tuning to Cartesian and non-Cartesian gratings in V4 (Serre et al, 2005)
¾ Two-spot interaction in V4  (Freiwald et al, 2005; Cadieu et al. 2007)
¾ Tuning and invariance properties  in AIT (Logothetis et al, 1995)
¾ Average “average effect” in IT (Zoccolan, Cox & DiCarlo, 2005)
¾ IT read out data (Hung et al, 2005)
¾ Differential role of IT and PFC in categ. (Freedman et al, 2001,2002,2003)
¾ Trade-off of selectivity and invariance in IT (Zoccolan, Kouh, DiCarlo, 2007)
¾ Face inversion effect (Riesenhuber, Sinha et al, 2004)
¾ Rapid categorization (Serre et al., 2005, 2007)

Serre, Kouh, Cadieu, Knoblich, Kreiman, Poggio. MIT AI Memo 2005



So…the model fits many physiological data (V1, 
V4, IT, PFC…), predicts several new ones…

recently it provided a surprise (for me)…

…when we compared its performance  with 
human vision 

on rapid categorization of complex natural images 
…

Serre, Oliva, Poggio, 2007



Rapid categorization



Source: Modified from Tim Masquellier, ECVP’05



Source: Modified from Tim Masquellier, ECVP’05



Source: Modified from Tim Masquellier, ECVP’05



Source: Modified from Tim Masquellier, ECVP’05



Source: Modified from Tim Masquellier, ECVP’05



Source: Modified from Tim Masquellier, ECVP’05



Rapid categorization task

Animal present
or not ?

30 ms ISI

20 ms

Image

Interval 
Image-Mask

Mask
1/f noise

80 ms

(Thorpe et al, 1996; Van Rullen

 

& Koch, 2003; 
Bacon-Mace et al, 2005; Oliva & Torralba, in press)



(Torralba & Oliva, 2003; Oliva & Torralba, in press)



The model predicts human perf.

model

� for SOA ~ 50ms

� d’ ~ standardized 
error rate (the 
higher the d’ the 
better the 
performance)

(Serre, Oliva and Poggio, 2007)



The model predicts human perf.

model

human 
observers 
(n = 24)

Model 82% 

vs. 

humans 80%

(Serre, Oliva and Poggio, in sub)



Some missesSome hits

Similar correct and similar wrong answers



High correlation of correct answers and errors between humans 
and computer model: ρ~0.71
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…another surprise…

…
 

was that it works as well as the best machine vision 
systems…



The model performs at the level of the 
best computer vision systems on a 

variety of simple and difficult databases 
such as the SceneStreets

 
database

1Bileschi, Wolf, Serre

 

and Poggio, PAMI, 2006



StreetScenes Database. Subjective Results

Results 



Conclusions

We have a model describing how visual cortex 
computes. The model can:

� predict the neuronal properties in several cortical areas

�mimic human object recognition performance (no eye 
movements)

� perform better than many  computer vision systems



Hierarchical architecture of (visual) cortex: why?

A challenge to (classical) learning theory: 
a hierarchical

 
architecture

with unsupervised and supervised learning
and learning of invariances…

and potential advantages for learning from very few supervised 
examples…

possibly because the  organization of the visual world is 
hierarchical in space and time

Conclusions



�We have a model of part of the ventral stream-
- not a theory (as yet)!

� Is it possible that we will be able to replicate 
the brain without being able to develop a theory 
of it?

� Is it possible that understanding the brain will 
not go beyond simulations of a model of it?

High-level Musings



Which ones are we going to get 
right or wrong?

A simulation can answer…but 
no simple intuition beforehand…

We need a theory!
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The end…
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