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Computational neuroscience
may just begin to understand what is going on
In visual cortex
from a computational point of view

d We have an algorithm that mimics the ability of people to
recognize complex images but...

4 ...we have a model, not a theory: one motivation for Steve’s
talk!
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The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale

0 How then do the learning machines described by regularization compare with brains? One of
the most obvious differences is the ability of people and animals to learn
from very few examples.

a A comparison with real brains offers another, related, challenge to learning theory. The “learning
algorithms” we have described in this paper correspond to one-layer architectures. Are
hierarchical architectures with more layers justifiable in terms of learning
theory?

O There may also be the more fundamental issue of Sample complexity. ... Thus our ability of

learning from just a few examples, and its limitations, may be related to the hierarchical
architecture of cortex.

Q Why hierarchies?



Primer on the Brain
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A complex electro-chemical computing machinery

Human Brain
~ 10'! neurons (1 million flies ©)
~ 10"~ 10> synapses
~ 5 billion neurons in human visual cortex

Neuron

Fundamental space dimension: fine dendrites : 0.1
Fundamental time length : T msec



Neuron basics
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How does the brain recognize objects?
Consider how well we do in the first 100
msec (no eye movements)





What do we know about cortex and
recognition?
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Consider feedforward processing In the
ventral stream (we neglect feedback for now)
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A computational model

(which can be simulated on a computer)



A model: feedforward
~ > accounting only for immediate perception

It is in the family of “Hubel-Wiesel” models

(Hubel & Wiesel, 1959; Fukushima, 1980; Oram
& Perrett, 1993, Wallis & Rolls, 1997;
Riesenhuber & Poggio, 1999; Thorpe; Mel;
Koerner...)

It is the most quantitative and faithful to
known biology (though many details/facts are
unknown or still to be incorporated)
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Layers of cortical processing units

> Task-specific circuits
(from IT to PFC)

QO Supervised learning

> Generic dictionary of shape
components (from V1 to IT)

O Unsupervised learning during a
developmental-like stage
learning dictionaries of
“templates” at different S levels




SCP model

foh:v—10,1 € Im(v)
if f = I?H-{'i-“') and h £ H{'i!\}r

foh!:¢"—=[0,1] € Im(v")
if felIm(R)and ' € H'(v'),



1. The process starts with a distance on v provided by

do(f.9) =d(f.g9) = ||f —allp

Then we define a Neural Similarity following Steve:

rl,C .
N/C(f) = min d(foh.,t)

where Ntl‘c{ f) corresponds to the response of a C1 cell with template ¢
and with receptive field — the region over which the min is taken — corre-
sponding to ’.

2. We now can repeat the process by defiruing the derived distance of Steve
on I'm(v’) as

di(f.g9) = |INV(f) = N2“(g)ll,
and the second stage Newural Similarity with
ar2,C _ . ! Y
NZ7(f) ;f}}elﬂ,dl(fgh'f)

which is the response of a C2 cell with receptive field R.

3. The new derived distance is now on I'm(R)

dy(f.g) = [INZC(f) = N> ()| Ip.



ST and C1 units
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Partial list of detailed ‘pbredictions” of

physiology and psychophysics data

VVVVVVVYVYVYVYY VY VY

MAX in V1 (Lampl et al, 2004) and V4 (Gawne et al, 2002)

T|OV\2/650p5c;t reverse correlation in V1 (Livingstone and Conway, 2003; Serre et
al,

Tuning for boundary conformation (Cadieu et al., 2007, Pasupathy & Connor,
2001) in V4

Tuning for gratings in V4 (Gallant et al, 1996; Serre et al, 2005)

Tuning for two-bar stimuli in V4 (Reynolds et al, 1999; Serre et al, 2005)
Tuning to Cartesian and non-Cartesian gratings in V4 (Serre et al, 2005)
Two-spot interaction in V4 (Freiwald et al, 2005; Cadieu et al. 2007)
Tuning and invariance properties in AIT (Logothetis et al, 1995)

Average “average effect” in IT (Zoccolan, Cox & DiCarlo, 2005)

IT read out data (Hung et al, 2005)

Differential role of IT and PFC in categ. (Freedman et al, 2001,2002,2003)
Trade-off of selectivity and invariance in IT (Zoccolan, Kouh, DiCarlo, 2007)
Face inversion effect (Riesenhuber, Sinha et al, 2004)

Rapid categorization (Serre et al., 2005, 2007)

Serre, Kouh, Cadieu, Knoblich, Kreiman, Poggio. MIT Al Memo 2005



So..the model fits many physiological data (V1,
V4,IT, PFC..), predicts several new ones...

recently it provided a surprise (for me)...

...when we compared its performance with
human vision
on rapid categorization of complex natural images

Serre, Oliva, Poggio, 2007



Rapid categorization






Source: Modified from Tim Masquellier, ECVP’05



Source: Modified from Tim Masquellier, ECVP’05












Rapid categorization task
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The model predicts human pertf.
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The model predicts human pertf.
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humans 80%
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Similar correct and similar wrong answers

Some hits Some misses

Mod: 100% Hum: 96% Mod: 91% Hum:83% Mod: 22% Hum:21% Mod: 0% Hum:21%

Mod: 100% Hum:91% Mod 33% Hum 21% Mod: 0% Hum:29%
n




High correlation of correct answers and errors between humans

Mod: 44% Hum: 42%

Mod: 40% Hum:38

and computer model: p~0.71

od: 1[_},0% Hum: 25%

£ g

Mod: 91% Hum: 33% I‘v’lo: 20% Hum:75%

Mod: 82% Hu: 6%
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..another surprise...

.. was that it works as well as the best machine vision
systems...

32



The model performs at the level of the
best computer vision systems on a
variety of simple and difficult databases
such as the SceneStreets database

Bileschi, Wolf, Serre and Poggio, PAMI, 2006



StreetScenes Database. Subjective Results




Conclusions

We have a model describing how visual cortex
computes. The model can:

0 predict the neuronal properties in several cortical areas

0 mimic human object recognition performance (no eye
movements)

a perform better than many computer vision systems



Conclusions

Hierarchical architecture of (visual) cortex: why?

A challenge to (classical) learning theory:
a hierarchical architecture
with unsupervised and supervised learning
and learning of invariances...

and potential advantages for learning from very few supervised
examples...

possibly because the organization of the visual world is
hierarchical in space and time




High-level Musings

J We have a model of part of the ventral stream-
- not a theory (as yet)!

 Is it possible that we will be able to replicate
the brain without being able to develop a theory
of it?

U Is it possible that understanding the brain will
not go beyond simulations of a model of it?



Which ones are we going to get
right or wrong?

A simulation can answer...but

no simple intuition beforehand...

We need a theory!

Mod: 22% Hum:21%

Mod: 0% Hum: 21%

Mod: 0% Hum:29%
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The end...
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