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Introduction Spectral Methods Kernel Approximation Data vs. Information

Spectral Methods in Learning

The discrepancy between data and information

What role do spectral methods play in statistical learning?

@ Goal: get relevant “information” about very large datasets in
very high dimensional spaces

o Image segmentation, low-dimensional embeddings, ...
@ What is the “relevant” information contained in the data set?

@ Spectral methods reduce this question to finding a low-rank
approximation to a symmetric, positive semi-definite (SPSD)
kernel—equivalently, a quadratic form

@ They can be quite effective, and see wide use:

o Older methods: principal components analysis (1901),
multidimensional scaling (1958), . ..

o Newer methods: isomap, Laplacian eigenmaps, Hessian
eigenmaps, diffusion maps, ...
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Introduction Spectral Methods Kernel Approximation Data vs. Information

Application of Low-Rank Approximations to Learning

Inner and outer characteristics of the point cloud

Let {x1,...,xn} be a collection of data points in R™. Spectral
methods can be classified according to whether they rely on:

Outer characteristics of the point cloud (PCA, discriminants).
Here we work directly in the ambient space. Require
spectral analysis of a positive-definite kernel of
dimension m, the extrinsic dimensionality of the data.

Inner characteristics of the point cloud (MDS, extensions).
Embedding requires the spectral analysis of a kernel
of dimension n, the cardinality of the point cloud.

The spectral analysis task typically consists of finding a rank-k
approximation to a symmetric, positive semi-definite matrix.
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Introduction Spectral Methods Kernel Approximation Data vs. Information

How to Approximate an SPD Matrix, in Theory?

Finding a low-rank approximation is easy. ..

@ An SPSD matrix G can be written in spectral coordinates
G=UNUT,

where U is orthogonal and A = diag(A1, ..., A,) is diagonal.

@ The )A;'s are the eigenvalues of G, ordered such that
Al > X > ... > A; >0, and the u;'s are the eigenvectors.

e For any unitarily invariant norm || - ||, we have that
argmin |G- G| = UAUT =: G,
G: rank(G)=k

where Ay = diag(A1, A2, ..., Ak, 0,...,0)
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Spectral Methods Kernel Approximation Data vs. Information

Introduction

How to Approximate an SPD Matrix, in Practice?

Finding a low-rank approximation is hard!

Changing to spectral coordinates is done using the Singular Value
Decomposition of G, which requires O(n3) operations

@ On a Pentium IV 3GHZ desktop

PC, with 1GB RAM, 512k Cache: o Extrapolating to

n =10, factoring G
takes more than 4
months.
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Introduction Spectral Methods Kernel Approximation Data vs. Information

Approximating Large Kernels

How to discriminate between data and information?

This presents a practical problem for large data sets!
@ A commonly used “trick” is to sparsify the kernel.
o Fixe>0.If Gj<e, set GG=0
o Questions: How to choose €? How accurate is the result?
@ Alternative approach: discard some of the data.

e How to construct a low-rank approximation using just some of
the data? The Nystrom extension provides an answer

@ The basic idea is as follows:

o Write G = X7 X, so that G is a Gram matrix for vectors
X1, ..., X,

o Choose a subset | of vectors X; and their correlations with all
the other vectors to find a low-rank approximation G.
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Introduction Spectral Methods Kernel Approximation Data vs. Information

A Provably Good Low-Rank Approximation

Our main result on approximating quadratic forms

How to choose / : |/| = k so as to minimize |G — G|?

@ This is equivalent to asking: “How to choose the most
informative part from our dataset?”’—most informative being
conditioned on our reconstruction scheme

@ There are Wlk')

o We define the following distribution on multi-indices:

multi-indices—no hope of enumerating

e — det(Gjx)
T 2=k det(Grxi)

@ Our main result will be to show that, for spectral
decomposition G = UAUT, we have in Frobenius norm:

E||G — é” < (k+1)(Aks1 + Mk + .-+ Ap)

T HARVARD ENGINEERING
&) Ano APPLIED SCIENCES

Wolfe (Harvard University) Spectral Methods in Learning October 2007 8 /37



Main Results Nystrom Randomized Deterministic

Outline

Approximation of quadratic forms in learning theory
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Main Results Nystrom Randomized Deterministic

The Nystrom Extension
Simplify the problem

Historically, the Nystrom extension was introduced to obtain
numerical solutions to integral equations.

Let g : [0,1] x [0,1] — R be an SPSD kernel and (u;, AY),

i € N, denote its pairs of eigenfunctions and eigenvalues:

1
/0 g(x y)uily) dy = Aui(x), i€ N.

@ The Nystrom extension approximates the eigenvectors of
g(x,y) by evaluation of the kernel at k? distinct points

Let {(xm,x,,)}’,j,ynzl € [0,1] x [0, 1].
Define G(m, n) = Gmp := g(Xm, Xn)

(]
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Main Results Nystrom Randomized Deterministic

The Nystrom Extension

Extend the solution

@ We now solve a finite dimensional problem

k
Z G(m,n)vi(n) = A/ vi(m), i=1,2,... k,
n=1

x| =

where (v, \Y) represent the k eigenvector-eigenvalues pairs
associated with G.

@ What do we do with these eigenvectors? We extend them to
approximate u; = u; as follows:

1 k
Ui(x) = 1o D &0 xm)vi(m).
I m=1

@ In essence: only use partial information about the kernel to
solve a simpler eigenvalue problem, and then to extend the
solution using complete knowledge of the kernel.
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Main Results Nystrom Randomized Deterministic

The Nystrom Extension

In finite dimensions

The Nystrom extension first solves a simpler
eigenfunction/eigenvalue problem.
@ How do we translate this to a finite dimensional setting?

@ We approximate k eigenvectors of G by decomposing and
then extending a k x k principal submatrix of G.

@ We partition G as follows

A BT
- [4 %]

with A € R¥*k; we say that this partition corresponds to the
multi-index | = {1,2,..., k}.
@ Define spectral decompositions G = UANUT and A = UA/\AUAT
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Main Results Nystrom Randomized Deterministic

The Nystrom Extension

The approximation error

@ The Nystrom extension then provides an approximation for k
eigenvectors in U as

17— Ua . _ T
U= [BUA/\Al] i A= UaNaUy.

@ In turn, the approximations U=U and Ay = A may be
composed to yield an approximation G = G according to
A BT ]

- — AT —
G — UAAU — |:B BA_]‘BT

@ The resultant approximation error is

|G~ G|l =|/C—BABT|,
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Main Results Nystrom Randomized Deterministic

Adjusting Computational Load vs. Approximation Error

From eigenanalysis to partitioning

On what fronts do we gain by using the Nystrom extension?

@ What is required is the spectral analysis of a kernel of size
k < n = gain in space and time complexity.

@ But we introduced another problem: how to partition G?

In other words, we have shifted the computational load from
eigenanalysis to the determination a “good” partition

@ The latter problem is more amenable to approximation

@ We give two algorithms to solve it, along with error bounds. ..
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Main Results Nystrom Randomized Deterministic

The Nystrom Extension

A combinatorial problem

We now introduce the problem formally with notation:

e /,J C{1,...,n} are multi-indices of respective cardinalities k
and /, containing pairwise distinct elements in {1,...,n}.

o We write | = {i1,...,ix}, J = {j1,...,ji}, and denote by /
the complement of / in {1,...,n}.

e Define Gy for the k x | matrix whose (p, g)-th entry is given
by (GixJ)pqg = Gi,j,- Abbreviate G; for Gjx.

@ The partitioning problem is equivalent to selecting a
multi-index / such that the error

HG - EH = ||G7 - G7><IGlilGI><7” = HSC(G/)H

is minimized.
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Main Results Nystrom Randomized Deterministic

The Nystrom Method and Exact Reconstruction
Recovery when rank(G;) = rank(G) = k

When does the Nystrom method admit exact reconstruction?

o If we take for / the entire set {1,2,...,n}, then the Nystrém
extension yields G = G trivially

o If G is of rank k < n, then there exist | : | = |k| such that the
Nystrom method yields exact reconstruction
@ These [ are those such that rank(G;) = rank(G) = k
o Intuition: express G as a Gram matrix whose entries comprise
the inner products of n vectors in R¥
o Knowing the correlation of these n vectors with a subset of k
linearly independent vectors allows us to recover them
o Information contained in G is sufficient to reconstruct G;
Nystrom extension performs the reconstruction

o To verify, we introduce our first lemma. ..

T HARVARD ENGINEERING
&) Ano APPLIED SCIENCES

Wolfe (Harvard University) Spectral Methods in Learning October 2007 16 / 37



Main Results Nystrom Randomized Deterministic

Verifying the Perfect Reconstruction Property

Characterizing Schur complements as ratios of determinants

Lemma (Crabtree-Haynsworth)

Let G, be a nonsingular principal submatrix of some SPSD matrix
G. The Schur complement of Gy in G is given element-wise by

(Sc(G)))ij = det(j’:t{(i}cj)w{j})- (1)

4

This implies that for / such that rank(G;) = rank(G) = k,
Sc(G) = Gj = G G, "G = 0.

o If rank(G) = k = |/|, then (1) implies that diag(Sc(G;)) =0

@ Positive definiteness of G implies positive definiteness of
Sc(Gy) for any multi-index /, allowing us to conclude that
Sc(Gy) is identically zero. Gk s
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Main Results Nystrom Randomized Deterministic

Randomized Low-Rank Kernel Approximation

Randomized multi-index selection by weighted sampling

Whether rank(G) = k or rank(G) > k, we are faced with the task
of selecting a multi-index / from amongst a set of () possibilities.
This motivates our first algorithm for multi-index selection:

@ Observation: Since G is positive definite, it induces a
probability distribution on the set of all / : |/| = k as follows:

pG,k(/) X det(G/),

with the normalizing constant being }; ,_ det(G))

o Algorithm: first sample | ~ pg «(/), then perform the
Nystrom extension on the chosen multi-index

Recall: if rank(G) = k and we seek a rank-k approximant G,
then G = G by our previous argument.
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Main Results Nystrom Randomized Deterministic

Randomized Multi-Index Selection by Weighted Sampling

Statement of the main result

Our randomized algorithm for multi-index selection admits the
following error bound in expectation:

Theorem (Randomized Multi-Index Selection)

Let G be a real, n X n, positive quadratic form with eigenvalues
A1 > ... > \,. Let G be the Nystrém approximation to G
corresponding to |, with | ~ pg (I) oc det(Gy). Then

E||G—G| < (k+1) > A (2)

I=k+1
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Main Results Nystrom Randomized Deterministic

Proof of the Randomized Multi-Index Result |

Randomized algorithm for multi-index selection

Proof.
We seek to bound

1
21, j1j=« det(Gr)

E|G - G|l =
1|1|=k

Denote the eigenvalues of Sc(G)) as {5\] J'-’;lk;

and subadditivity of the square root imply that

ISc(Gnll = > X < > X =t(Sc(G)).
j j

> det(Gr) [|Sc(G)]l-

positive definiteness
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Main Results Nystrom Randomized Deterministic

Proof of the Randomized Multi-Index Result Il

Randomized algorithm for multi-index selection

The Crabtree-Haynsworth Lemma yields

det(Gyugiy)

tr(Sc(Gy)) = det(G))

i¢l
and thus

E[G-Gl<3 Y 3 det(Guy) ()

I|l=k i¢l

where Z =3, ;4 det(Gy) is the normalizing constant of pg «(/).
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Main Results Nystrom Randomized Deterministic

Proof of the Randomized Multi-Index Result 1]

Randomized algorithm for multi-index selection

Every multi-index of cardinality k 4+ 1 appears exactly k 4+ 1 times
in the double sum of (3) above, whence

E|G - G| < (kJZrl) D det(G)). (4)
I,|l|=k+1

The sum of the principal (k + 1)-minors of G can be expressed as
the sum of (k + 1)-fold products of its ordered eigenvalues
(Cauchy-Binet):

D det(G)= D Nidp N

1,|l|l=k+1 1< <<
<Jk+1=n

nnnnnnnn
o 3CIENCES
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Main Results Nystrom Randomized Deterministic

Proof of the Randomized Multi-Index Result IV

Randomized algorithm for multi-index selection

It thus follows that

Z det(G/) < Z A A« A Z7zk+1 Al
1,|l|=k+1 1<j1<jp <.
<jk<n

= Z det(Gr) o1 M-

1)1|=k

Combining this relation with (4) above, we obtain

E||G@||§(/HZ_1) D det(G) D> N =(k+1) Y N,

1,11|=k I=k+1 I=k+1

which concludes the proof. ® e

) sciences
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Main Results Nystrém Randomized Deterministic

Deterministic Multi-Index Selection by Sorting

A different flavor of result

@ We obtain an SPSD approximant G such that

n
E|G—G| <(k+1) > A
i=k+1

in the Frobenius norm, as compared to the optimum

n 1/2
= 2
jo- Gl = ( 3 %)
i=k+1
afforded by the full spectral decomposition.
@ Two practical issues:

o Complexity of sampling from pg (/) x det(G))
o Desire for deterministic rather than probabilistic result B e
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Main Results Nystrém Randomized Deterministic

Deterministic Low-Rank Kernel Approximation

Deterministic multi-index selection by sorting

@ We now present a low-complexity deterministic multi-index
selection algorithm and provide a bound on its worst-case error

@ Let / contain the indices of the k largest diagonal elements of
G and then implement the Nystrom extension. Then we have:

Theorem (Deterministic Multi-Index Selection)

Let G be a real positive-definite kernel, let | contain the indices of
its k largest diagonal elements, and let G be the corresponding
Nystrom approximation. Then

IG -G <> Gi. (5)
i¢l

y
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Main Results

Nystrom Randomized Deterministic

Proof of the Deterministic Multi-Index Result |

Deterministic algorithm for multi-index selection

We have sacrificied some power to obtain gains in the deterministic
nature of the result and in computational efficiency:

IG - G|l < Z Gii (sorting) vs. E||G — G| < (k+1) Z Ai (sampling)
i=k+1 i=k+1

The proof of this theorem is straightforward, once we have the
following generalization of the Hadamard inequality:

Lemma (Fischer's Lemma)

If G is a positive-definite matrix and G; a nonsingular principal
submatrix then

det(G/U{,'}) < det( G/) Gj;.
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Main Results Nystrém Randomized Deterministic

Proof of the Deterministic Multi-Index Result 1l

Deterministic algorithm for multi-index selection

Proof of the Theorem.

We have from our earlier proof that |G — G|| < tr(Sc(G)));
applying Crabtree-Haynsworth in turn gives

~ 1
— < g
G = G|| < 4e1(G)) él det(Gyuiy),

after which Fischer's Lemma yields |G — G|| < > i Gii- H

@ In other work (Belabbas and W., 2007), we have shown this
algorith to perform well in an array signal processing context.

@ Beginning with the case kK =1, it may be seen through
repeated application of the theorem to constitute a simple
stepwise-greedy approach to multi-index selection. G e
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Main Results Nystrém Randomized Deterministic

Remarks and Discussion

Comparison to known results

@ Drineas et al. (2005) proposed to choose row/column subsets
by sampling, independently and with replacement, indices in

proportion to elements of {G,% 7 1, and were able to show:

n
E||G— G| < |G- G +2v2)_ GF,
i=1
@ Our randomized approach yields a relative error bound
Algorithmic complexity: O(k3 + (n — k)k?)
@ Our deterministic approach offers improvement if tr(G) > n;
complexity O(k3 + (n — k)k? + nlog k)
@ Connections to the recently introduced notion of volume
sampling in theoretical computer science
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Simulation Studies Sampling Sampling Embeddings

Outline
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Simulation Studies Sampling Sampling Embeddings

Implementation of the Sampling Scheme

Sampling from pgc «

e Sampling directly from pg x o det(G;) is infeasable
@ Simulation methods provide an appealing alternative

@ We employed the Metropolis algorithm to simulate an ergodic
Markov chain admitting p¢ «(/) as its equilibrium distribution:

o The proposal distribution is straightforward: exchange one
index from / with one index from [ uniformly at random

o Distance to pg (+) in total variation norm typically observed
to be small after on the order of 50|/| iterations of the chain.

@ We made no attempt to optimize this choice, as its
performance in practice was observed to be satisfactory

T HARVARD ENGINEERING
&) Ano APPLIED SCIENCES

Wolfe (Harvard University) Spectral Methods in Learning October 2007 30/ 37



Simulation Studies Sampling Sampling Embeddings

A Metropolis Algorithm for Sampling from pg «

Implementation of the sampling scheme

INPUT : Data X,0< k<n, T >0,
Implementation of the k x k sub-kernel W(©) with indices /(©)
Metropolis sampler is
straightforward and

Intuitive: fort=1to T do

pick s € {1,2,..., k} uniformly at random
pick j’ € {1,2,...,n} \ /=1 at random
W’ < UpdateKernel( W1 X s, j!)

@ Initialize (in any desired with probability min(1 det(W’) ) do

OUTPUT : Sampled k-multi-index /

@ Begin with data X =
{x1, X2, ..., Xn} ER"

manner) a multi-index 7 der(WU)
1) of cardinality k WL « W
o ey 10 = {7} UIED i)

@ Compute the sub-kernel otherwise

W(O)(X, /(0)) w® = -1

(1) (t=1)

@ After T iterations, I <=1

return | ~ pg end do

’ end for G s Reruies screncrs
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Simulation Studies Sampling Sampling Embeddings

Simulation Results

Experimental setup

First, we compare the different randomized algorithms for
multi-index selection with one another, and with the method of
Drineas et al. (2005):

@ Three different settings for approximation error evaluation:
Principal components, Diffusion maps, and Laplacian
eigenmaps.

@ We draw kernels at random from ensembles relevant to the
test setting, and then average (though results do not imply a
measure on the input space)

@ For each kernel drawn, we further average over many runs of
the randomized algorithm.
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Simulation Studies Sampling Sampling Embeddings

Approximate Principal Components Analysis

Randomized multi-index selection

= © - Sampling Uniformly|

o samping0G? | @ We drew 1000 50 x 50
9 Sempe B Pe SPD matrices of rank
12 from a Wishart
ensemble.

'
A
S

@ We show the error of
several algorithms used
to perform a low rank
approximation (outputs
averaged over 250

. . . . . . trials)
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Simulation Studies Sampling Sampling Embeddings

Approximate Diffusion Maps

Randomized multi-index selection

: : : ~5 - gameing Unigrmy @ We sample 500 points
Lo S . i
- . Sampling = p_, uniformly on a circle,
20 —o- Pl and use the Diffusion

maps algorithm to
define an appropriate
) kernel for embedding

@ We measured the
resultant approximation

Relative Error (dB)
|
&b
8

error, averaged over 100
- 7 7 , : FRRREE | datasets and over 100
2 s 3 : : 7 s trials per set

4 5 6
Approximant Rank
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Simulation Studies Sampling Sampling Embeddings

Approximate Diffusion Map

Deterministic multi-index selection

o
©
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Relative Error
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At left, we plot the
distribution of
approximation error for
fixed rank k = 8.

The worst-case error
bound of our
deterministic algorithm
can be clearly seen
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Simulation Studies Sampling Sampling Embeddings

Laplacian Eigenmaps Example

Embedding a massive dataset

We used the Laplacian eigenmaps algorithm embed the fishbow/ dataset

100 000—-Point Realization of "Fishbowl" Data Set

-3 -3
x 10 x 10 FT] HARVARD ENGINEERING
&’ AND APPLIED SCIENCES
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Summary

Summary
Approximation of quadratic forms in learning theory

@ Two alternative strategies for the approximate spectral
decomposition of large kernels were presented, both coupled
with the Nystrom method:

o Randomized multi-index selection (sampling)
o Deterministic multi-index selection (sorting)

@ Simulation studies demonstrated applicability to machine

learning tasks, with measurable improvements in performance
o Low-rank kernel approximation
e Methods for nonlinear embeddings

@ Work supported by NSF-DMS and DARPA. Related activities

in our Statistics & Informations Sciences Laboratory include:
o Exploiting variability in the space of speech sounds (DARPA)
o Color image acquisition, processing, and display (Sony Corp.)

o Statistical inference and algorithms for graphs and networks
(NSF-DMS/MSBS, NSF-CISE/DHS)
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