CME 302: NUMERICAL LINEAR ALGEBRA
 FALL 2005/06
 LECTURE 14

GENE H. GOLUB

1. Eigenvalues of Tridiagonal Toeplitz Matrices

We will now show how we can find eigenvalues and eigenvectors of certain tridiagonal toeplitz matrices that frequently arise in difference approximations. Let

$$
\hat{T}=\left[\begin{array}{cccc}
0 & 1 & & \\
1 & \ddots & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & 0
\end{array}\right], \quad T(a, b)=\left[\begin{array}{cccc}
a & b & & \\
b & \ddots & \ddots & \\
& \ddots & \ddots & b \\
& & b & a
\end{array}\right]=a I+b \hat{T} .
$$

Note that $\lambda_{j}(T(a, b))=a+b \lambda_{j}(\hat{T})$. We first study the case where $a=0$ and $b=1$; then we will consider the case $a=4, b=-1$ arising from Poisson's equation.

Consider $\hat{T} \mathbf{v}=\lambda \mathbf{v}$. We can write this as a system of equations

$$
\begin{aligned}
v_{j-1}+v_{j+1} & =\lambda v_{j} \\
v_{2} & =\lambda v_{1} \\
v_{N-1} & =\lambda v_{N}
\end{aligned}
$$

Since \hat{T} is symmetric, it has the decomposition $\hat{T}=V \Lambda V^{\top}$, and therefore we can write $T(a, b)=$ $V \Lambda(a, b) V^{\top}$ where $\Lambda(a, b)=a I+b \Lambda$.

We guess that

$$
v_{j}=A \sin j \theta+B \cos j \theta .
$$

Substituting this representation into $T \mathbf{v}=\lambda \mathbf{v}$ yields

$$
\begin{aligned}
\lambda v_{j} & =\lambda(A \sin j \theta+B \cos j \theta) \\
& =A \sin (j-1) \theta+B \cos (j-1) \theta+A \sin (j+1) \theta+B \cos (j+1) \theta \\
& =A[\sin (j-1) \theta+\sin (j+1) \theta]+B[\cos (j-1) \theta+\cos (j+1) \theta] \\
& =A(2 \sin j \theta \cos \theta)+B(2 \cos \theta \cos j \theta) \\
& =2 \cos \theta v_{j}
\end{aligned}
$$

which yields $\lambda=2 \cos \theta$.
We use the boundary conditions to find θ. Our representation of v_{j} yields

$$
\begin{aligned}
A \sin 2 \theta+B \cos 2 \theta & =2 \cos \theta(A \sin \theta+B \cos \theta) \\
A \sin (N-1) \theta+B \cos (N-1) \theta & =2 \cos \theta(A \sin N \theta+B \cos N \theta)
\end{aligned}
$$

which can be written as a system of two equations for the two unknowns A and B,

$$
\begin{aligned}
(\sin 2 \theta-2 \cos \theta \sin \theta) A+(\cos 2 \theta-2 \cos \theta \sin \theta) B & =0 \\
(\sin (N-1) \theta-2 \cos \theta \sin N \theta) A+(\cos (N-1) \theta-2 \cos \theta \cos \theta) & =0
\end{aligned}
$$

Notes originally due to James Lambers. Minor editing by Lek-Heng Lim.
or, in matrix form,

$$
\left[\begin{array}{cc}
0 & -1 \\
\times & \times
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which yields $B=0$. In order for A to be nonzero, we must have

$$
\begin{aligned}
0 & =\sin \left(N_{1}\right) \theta-2 \cos \theta \sin N \theta \\
& =\sin N \theta \cos \theta-\sin \theta \cos N \theta-2 \cos \theta \sin N \theta \\
& =-\sin N \theta \cos \theta-\sin \theta \cos N \theta \\
& =-\sin (N+1) \theta
\end{aligned}
$$

which yields

$$
\theta_{k}=\frac{j \pi}{N+1}, \quad \lambda_{k}=2 \cos \left(\frac{k \pi}{N+1}\right) .
$$

Thus the largest eigenvalue is $\lambda_{1}=2 \cos \pi h \approx 2=\|\hat{T}\|_{\infty}$. Note that the eigenvalues are not uniformly distributed on the interval $[0,2]$.

The eigenvectors are given by

$$
v_{k j}=A \sin \left(\frac{k j \pi}{N+1}\right) .
$$

We want normalized eigenvectors, so we take A so that $\left\|\mathbf{v}_{k}\right\|_{2}^{2}=1$, which yields

$$
A=\sqrt{\frac{2}{N+1}} .
$$

Recall that $T(a, b)=a I+b \hat{T}$, where $\hat{T}=V \Lambda V^{\top}$ and $V=\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{N}\end{array}\right]$. Thus $\lambda_{k}(a, b)=$ $a+2 b \cos (k \pi / N+1)$.

Suppose $T(a, b) \mathbf{u}=\mathbf{e}$. Then the solution \mathbf{u} is given by

$$
\mathbf{u}=V \Lambda^{-1} V^{\top} \mathbf{e}=V \Lambda^{-1} \hat{\mathbf{e}}
$$

where

$$
\hat{e}_{k}=\sum_{i=1}^{N} \sqrt{\frac{2}{N+1}} \sin \left(\frac{i k \pi}{N+1}\right) e_{i}=\mathbf{v}_{k}^{\top} \mathbf{e} .
$$

This can be computed quickly using the FFT. Similarly, we can use the inverse FFT to compute $V\left(\Lambda^{-1} \hat{\mathbf{e}}\right)$.

We now wish to find the eigenvalues of

$$
A=\left[\begin{array}{ccccc}
T & -I & & & \\
-I & T & -I & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -I \\
& & & -I & T
\end{array}\right]
$$

If we define

$$
Q=\left[\begin{array}{lll}
V & & \\
& \ddots & \\
& & V
\end{array}\right]
$$

then

$$
Q^{\top} A Q=\hat{A}=\left[\begin{array}{ccccc}
\Lambda & -I & & & \\
-I & \Lambda & -I & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -I \\
& & & -I & \Lambda
\end{array}\right]
$$

The system $\hat{A} \mathbf{w}=\mu \mathbf{w}$ has equations of the form

$$
-w_{i, j-1}+\lambda w_{i j}-w_{i, j+1}=\mu w_{i j}, \quad i=1, \ldots, N .
$$

If we reorder the unknowns by columns instead of rows, then we obtain a block diagonal matrix where each diagonal block is a tridiagonal block of the form $T_{k}\left(\lambda_{k},-1\right)$, where λ_{k} is an eigenvalue of T. The matrix $T_{k}\left(\lambda_{k},-1\right)$ has eigenvalues

$$
\lambda_{j}\left(T_{k}\left(\lambda_{k},-1\right)\right)=\lambda_{k}-2 \cos \frac{j \pi}{N+1}, \quad j=1, \ldots, N+1 .
$$

Therefore the eigenvalues of A are given by

$$
\mu_{r s}=4-2 \cos \frac{r \pi}{N+1}-2 \cos \frac{s \pi}{N+1}, \quad r, s=1, \ldots, N+1 .
$$

It follows that

$$
\mu_{\min }=4-4 \cos \frac{\pi}{N+1}, \quad \mu_{\max }=4-4 \cos \frac{N \pi}{N+1}=4+4 \cos \frac{\pi}{N+1} .
$$

Observe that $\mu_{\max } \leq\|A\|_{\infty}=8$. However, as $N \rightarrow \infty, \mu_{\min } \rightarrow 0$, so the matrix becomes ill-conditioned quite rapidly as $N \rightarrow \infty$.

Department of Computer Science, Gates Building 2B, Room 280, Stanford, CA 94305-9025
E-mail address: golub@stanford.edu

