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1. Eigenvalues of Tridiagonal Toeplitz Matrices

We will now show how we can find eigenvalues and eigenvectors of certain tridiagonal toeplitz
matrices that frequently arise in difference approximations. Let

T̂ =


0 1

1
. . . . . .
. . . . . . 1

1 0

 , T (a, b) =


a b

b
. . . . . .
. . . . . . b

b a

 = aI + bT̂ .

Note that λj(T (a, b)) = a + bλj(T̂ ). We first study the case where a = 0 and b = 1; then we will
consider the case a = 4, b = −1 arising from Poisson’s equation.

Consider T̂v = λv. We can write this as a system of equations

vj−1 + vj+1 = λvj

v2 = λv1

vN−1 = λvN

Since T̂ is symmetric, it has the decomposition T̂ = V ΛV >, and therefore we can write T (a, b) =
V Λ(a, b)V > where Λ(a, b) = aI + bΛ.

We guess that
vj = A sin jθ + B cos jθ.

Substituting this representation into Tv = λv yields

λvj = λ(A sin jθ + B cos jθ)

= A sin(j − 1)θ + B cos(j − 1)θ + A sin(j + 1)θ + B cos(j + 1)θ

= A[sin(j − 1)θ + sin(j + 1)θ] + B[cos(j − 1)θ + cos(j + 1)θ]

= A(2 sin jθ cos θ) + B(2 cos θ cos jθ)
= 2 cos θvj

which yields λ = 2 cos θ.
We use the boundary conditions to find θ. Our representation of vj yields

A sin 2θ + B cos 2θ = 2 cos θ(A sin θ + B cos θ)

A sin(N − 1)θ + B cos(N − 1)θ = 2 cos θ(A sinNθ + B cos Nθ)

which can be written as a system of two equations for the two unknowns A and B,

(sin 2θ − 2 cos θ sin θ)A + (cos 2θ − 2 cos θ sin θ)B = 0

(sin(N − 1)θ − 2 cos θ sinNθ)A + (cos(N − 1)θ − 2 cos θ cos θ) = 0
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or, in matrix form, [
0 −1
× ×

] [
A
B

]
=

[
0
0

]
which yields B = 0. In order for A to be nonzero, we must have

0 = sin(N1)θ − 2 cos θ sinNθ

= sinNθ cos θ − sin θ cos Nθ − 2 cos θ sinNθ

= − sinNθ cos θ − sin θ cos Nθ

= − sin(N + 1)θ

which yields

θk =
jπ

N + 1
, λk = 2 cos

(
kπ

N + 1

)
.

Thus the largest eigenvalue is λ1 = 2 cos πh ≈ 2 = ‖T̂‖∞. Note that the eigenvalues are not
uniformly distributed on the interval [0, 2].

The eigenvectors are given by

vkj = A sin
(

kjπ

N + 1

)
.

We want normalized eigenvectors, so we take A so that ‖vk‖22 = 1, which yields

A =

√
2

N + 1
.

Recall that T (a, b) = aI + bT̂ , where T̂ = V ΛV > and V =
[
v1 · · · vN

]
. Thus λk(a, b) =

a + 2b cos(kπ/N + 1).
Suppose T (a, b)u = e. Then the solution u is given by

u = V Λ−1V >e = V Λ−1ê

where

êk =
N∑

i=1

√
2

N + 1
sin

(
ikπ

N + 1

)
ei = v>k e.

This can be computed quickly using the FFT. Similarly, we can use the inverse FFT to compute
V (Λ−1ê).

We now wish to find the eigenvalues of

A =


T −I
−I T −I

. . . . . . . . .
. . . . . . −I

−I T

 .

If we define

Q =

V
. . .

V

 ,

then

Q>AQ = Â =


Λ −I
−I Λ −I

. . . . . . . . .
. . . . . . −I

−I Λ

 .
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The system Âw = µw has equations of the form

−wi,j−1 + λwij − wi,j+1 = µwij , i = 1, . . . , N.

If we reorder the unknowns by columns instead of rows, then we obtain a block diagonal matrix
where each diagonal block is a tridiagonal block of the form Tk(λk,−1), where λk is an eigenvalue
of T . The matrix Tk(λk,−1) has eigenvalues

λj(Tk(λk,−1)) = λk − 2 cos
jπ

N + 1
, j = 1, . . . , N + 1.

Therefore the eigenvalues of A are given by

µrs = 4− 2 cos
rπ

N + 1
− 2 cos

sπ

N + 1
, r, s = 1, . . . , N + 1.

It follows that

µmin = 4− 4 cos
π

N + 1
, µmax = 4− 4 cos

Nπ

N + 1
= 4 + 4 cos

π

N + 1
.

Observe that µmax ≤ ‖A‖∞ = 8. However, as N → ∞, µmin → 0, so the matrix becomes
ill-conditioned quite rapidly as N →∞.
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