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1. Introduction. The objective of this paper is to derive a priori error estimates
for the approximation of nonlinear scalar conservation equations by using an explicit
first-order Lagrange finite element technique introduced in Guermond and Nazarov
[12]. In particular we prove that the error in the L∞t (L1

x)-norm is at most O(h
1
4 ) un-

der the appropriate CFL condition in any space dimension and for any shape-regular
mesh family; the mesh may be composed of an arbitrary combination of simplices,
prisms, cuboids, etc. The estimate is established by using the technique of the dou-
bling of the variables introduced by Kružkov [17] and first used by Kuznecov [18] to
prove error estimates. We follow the approach of Cockburn et al. [7], Cockburn and
Gremaud [6] and Bouchut and Perthame [2] and propose some modifications thereof
that makes the methodology slightly easier to apply (see Lemma A.2). To the best our
knowledge, this is the first time that a priori error estimates have been established for
an explicit method using continuous Lagrange finite elements to approximate nonlin-
ear scalar conservation equations. Similar results have been established by Cockburn
and Gremaud [5], but the error estimate therein is O(h

1
8 ) and the algorithm is a

shock capturing streamline diffusion method using implicit time stepping and an ar-
tificial viscosity scaling like h

3
4 in the shocks. The finite volume literature is slightly

richer in this respect; for instance, O(h
1
4 ) error estimates in the L1

t (L
1
x)-norm have

been established for various families of finite volume schemes, see e.g., Eymard et al.
[9], Chainais-Hillairet [3].

The paper is organized as follows. The statement of the problem, notation and
notions related to finite element meshes are introduced in §2. The description of the
approximation method is done in §3. The maximum principle and an L2-stability
estimate are also proved therein. The error analysis is done in §4. We first establish
entropy inequalities for the Kružkov entropy family and then deduce a error estimate
by using an a priori bound established in the Appendix (see Lemma A.2). The main
results of the paper are Theorem 4.5 and, to some extent, some originality is claimed
for Lemma A.2.

2. Preliminaries. The objectives of this section is to state the problem, intro-
duce the finite element setting, and establish some preliminary results.
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2.1. Formulation of the problem. Let us consider a scalar conservation equa-
tion in a polyhedral domain Ω in Rd,

(2.1) ∂tu+∇·f(u) = 0, u(x, 0) = u0(x), (x, t) ∈ Ω×R+.

The initial data u0 is assumed to be bounded and the flux f is assumed to be Lipschitz,

(2.2) u0 ∈ L∞(Ω), f ∈ Lip(R;Rd).

We assume that the boundary conditions are either periodic or the initial data is com-
pactly supported. In the second case we are interested in the solution in a time interval
[0, T ] such that the domain of influence of u0 over [0, T ] does not reach the boundary
of Ω. The purpose of these assumptions is to avoid unnecessary technical difficulties
induces by boundary conditions. Following the work of Kružkov [17], it is now well
understood that this problem has a unique entropy solution; i.e., a weak solution
that additionally satisfies the entropy inequalities ∂tE(u) +∇·F (u) ≤ 0 for all con-
vex entropies E ∈ Lip(R;R) and associated entropy fluxes Fi(u) =

∫ u
0
E′(v)f ′i(v) dv,

1 ≤ i ≤ d.

2.2. Mesh. The approximation in space of (2.1) will be done by using continuous
finite elements. Recall that it is always possible to construct affine finite element
meshes over Ω since Ω is assumed to be a polyhedron. We denote by {Kh}h>0 an
affine shape regular mesh family. The shape regularity is understood in the sense of
Ciarlet. The elements in the mesh family {Kh}h>0 are assumed to be generated from a

finite number of reference elements. The reference elements are denoted K̂1, . . . , K̂$.
For example, the mesh Kh could be composed of a combination of triangles and
parallelograms in two space dimensions ($ = 2 in this case); it could also be composed
of a combination of tetrahedra, parallelepipeds, and triangular prisms in three space
dimensions ($ = 3 in this case). Let Kh be a mesh in the family {Kh}h>0. Let K be

a cell in the mesh Kh and let K̂r, 1 ≤ r ≤ $, be the corresponding reference geometric
element. The affine diffeomorphism mapping K̂r to an arbitrary element K ∈ Kh is
denoted ΦK : K̂r −→ K and its Jacobian matrix is denoted JK . The assumption that
the mapping ΦK is affine could be removed by proceeding as in Ciarlet and Raviart
[4] but this would introduce additional unnecessary technicalities.

We want to approximate the entropy solution of (2.1) with continuous Lagrange
finite elements. For this purpose we introduce the set of reference Lagrange finite
elements {(K̂r, P̂r, Σ̂r)}1≤r≤$. The index r ∈ {1, . . . , $} will be omitted in the rest
of the paper to alleviate the notation. Then we define the scalar-valued Lagrange
finite element space

(2.3) Xh = {v ∈ C0(Ω;R); v|K◦ΦK ∈ P̂ , ∀K ∈ Kh},

where P̂ is the reference polynomial space defined on K̂ (note the index r has been

omitted). Denoting by {â1, . . . âŝ} the Lagrange nodes of K̂, we assume that the space

P̂ is such that

(2.4) min
`∈I(K̂)

v̂(â`) ≤ v̂(x̂) ≤ max
`∈I(K̂)

v̂(â`), ∀v̂ ∈ P̂ ,∀x̂ ∈ K̂.

Let P1 and Q1 be the set of multivariate polynomials of total and partial degree at
most 1, respectively; then the above assumption holds for P̂ = P1 when K is a simplex
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and P̂ = Q1 when K is a parallelogram or a cuboid. This assumption holds also for
first-order prismatic elements in three space dimensions.

Let {a1, . . . ,aI} be the collection of all the Lagrange nodes in the mesh Kh, and
let {ϕ1, . . . , ϕI} be the corresponding global shape functions. Recall that {ϕ1, . . . , ϕI}
forms a basis of Xh and ϕi(aj) = δij . In the rest of the paper we denote by πh :

C0(Ω) −→ Xh the Lagrange interpolation operator, πh(v)(x) :=
∑I
i=1 v(ai)ϕi(x).

We define the operator C : Xh −→ RI so that C(vh) is the coordinate vector of vh in

the basis {ϕ1, . . . , ϕI}, i.e., vh =
∑I
i=1 C(vh)iϕi. Note that C(vh)i = vh(ai). We are

also going to use capital letters for the coordinate vectors to alleviate the notation; for
instance we shall write V = C(vh) when the context is unambiguous. Note finally that
the above assumptions on the mesh and the reference elements imply the following
convexity property:

(2.5) min
`∈I(K)

C(vh)` ≤ v(x) ≤ max
`∈I(K)

C(vh)`, ∀vh ∈ Xh,∀x ∈ K, ∀K ∈ Kh.

Let ϕi be a shape function; the support of ϕi is denoted Si and the measure of
Si is denoted |Si|, i = 1, . . . , I. We also define Sij := Si ∩ Sj the intersection of the
two supports Si and Sj . For any union of cells in Kh, say E; we define I(E) to be
the collection of the indices of the shape functions whose support on E is of nonzero
measure, i.e., I(E) := {j ∈ {1, . . . , I}; |Sj ∩E| 6= 0}. We are going to regularly invoke
I(K) and I(Si) and the partition of unity property:

∑
i∈I(K) ϕi(x) = 1 for all x ∈ K.

Let M ∈ RI×I be the so-called consistent mass matrix with entries
∫
Sij

ϕi(x)ϕj(x) dx.

We then define the diagonal lumped mass matrix ML with diagonal entries

(2.6) mi :=

∫
Si

ϕi(x) dx.

The partition of unity property implies that mi =
∑
j∈I(Si)

∫
ϕj(x)ϕi(x) dx, i.e., the

entries of ML are obtained by summing the rows if M . The diagonal matrix ML

is known to be a consistent second-order approximation of M . The two quantities
‖vh‖L2(Ω) = C(vh)TMC(vh) and ‖vh‖2`2h := C(vh)TMLC(vh) are equivalent. This

property actually holds for any Lp-norm. More precisely consider the discrete norm
`ph : Xh −→ R+, 1 ≤ 1 ≤ p < +∞, defined by

(2.7) ‖vh‖p`ph :=

I∑
i=1

mi|C(vh)i|p, ∀vh ∈ Xh.

Lemma 2.1. The are mmax,mmin > 0, depending only on {(K̂r, P̂r, Σ̂r)}1≤r≤$
and p ∈ [1,+∞), such that the following holds for all vh ∈ Xh and all Kh,

(2.8) mmin‖vh‖Lp(Ω) ≤ ‖vh‖`ph ≤ mmax‖vh‖Lp(Ω).

2.3. Local mesh size. Upon defining hK := diam(K) and denoting by ρK the
diameter of the largest ball that can be inscribed in K, it can be shown that

(2.9) detJK =
|K|
|K̂|

,
ρK
hK̂
≤ ‖JK‖`2 ≤

hK
ρK̂

,
ρK̂
hK
≤ ‖J−1

K ‖`2 ≤
hK̂
ρK

,
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where ‖JK‖`2 is the norm of JK subordinated to the Euclidean norm (see e.g., Girault
and Raviart [10, (A.2) p. 96]). The shape-regularity assumption of the mesh family
{Kh}h>0 means that the ratio hK/ρK is bounded uniformly with respect to K and Kh.
For further reference we define σ := sup{Kh} supK∈Kh hK/ρK . The global maximum
mesh size is denoted h = maxK∈Kh hK . The local minimum mesh size, hK , for any
K ∈ Kh is defined as follows:

(2.10) hK :=
1

maxi 6=j∈I(K) ‖∇ϕi‖L∞(Sij)
,

and the global minimum mesh size is h := minK∈Kh hK . Due to the shape regularity
assumption the quantities hK and hK are uniformly equivalent; it will turn out though
that using hK gives a sharper estimate of the CFL number.

2.4. Viscous bilinear form. Let nK be the number of vertices in K, i.e., nK :=
card(I(K)), and let ϑK := (nK − 1)−1. Note that

(2.11) 0 < ϑmin($) := min
{Kh}

min
K∈Kh

ϑK , ϑmax($) := max
{Kh}

max
K∈Kh

ϑK < +∞.

since there are at most $ reference elements defining the mesh family. The artificial
viscosity that we are going to introduce to stabilize the Galerkin formulation will be
defined locally on each cell, K, by using the following bilinear form:

(2.12) bK(ϕj , ϕi) =


−ϑK |K| if i 6= j, i, j ∈ I(K),

|K| if i = j, i, j ∈ I(K),

0 if i 6∈ I(K) or j 6∈ I(K).

For instance it can be shown that bK(ϕj , ϕi) = κ
∫
K
JTK(∇ϕj)·JTK(∇ϕi) dx when K is

a simplex and K̂ is the regular simplex with all the edges of unit length, i.e., K is the
equilateral triangle of side 1 in two space dimension, and K is the regular tetrahedron
(all four faces are equilateral triangles) in three space dimensions, see Guermond
and Nazarov [12]. In this case κ = 4

3 in two space dimensions and κ = 3
2 in three

space dimensions. Note also that bK(ϕj , ϕi) ∼
∫
K

(∇ϕj)·(∇ϕi) dx if K is a regular
simplex, thereby showing the connection between bK and the more familiar bilinear
form associated with the Laplacian. The properties of bK we need in this paper on
arbitrary meshes can be summarized as follows:

Lemma 2.2. There exist constants bmin > 0 depending only on the collection
{(K̂r, P̂r, Σ̂r)}1≤r≤$ and the shape-regularity constant σ, such that the following iden-
tities hold for all K ∈ Kh and all uh, vh ∈ Xh:

bK(uh, vh) = ϑK |K|
∑

i∈I(K)

∑
I(K)3j<i

(Ui − Uj)(Vi − Vj)(2.13)

bK(uh, uh) ≥ bminh
2
K‖∇uh‖2L2(K).(2.14)

Proof. Let us prove (2.13) first. Let uh, vh ∈ Xh and let us set U := C(uh) and
V := C(vh). Let K be a cell in Kh. Up to the abuse of notation that consists of using
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uh instead of uh|K to denote the restriction of uh to K, we have

|K|−1bK(uh, vh) =
∑

i∈I(K)

(
UiVi −

∑
i 6=j∈I(K)

ϑKUiVj

)
= −ϑK

∑
i∈I(K)

∑
i6=j∈I(K)

Ui(Vj − Vi)
)

= −ϑK
∑

i∈I(K)

∑
I(K)3j<i

Ui(Vj − Vi) + Uj(Vi − Vj)
)

= ϑK
∑

i∈I(K)

∑
I(K)3j<i

(Ui − Uj)(Vi − Vj).

Up to the change of variable ûh := uh◦ΦK , this identity proves that |K|−1ϑ−1
K bK(·, ·) 1

2

is a norm on P̂ /R. Since all the norms are equivalent on P̂ /R and the collection of
reference finite elements is finite, there exist constants c2, c2 that depends only of the
collection {(K̂r, P̂r, Σ̂r)}1≤r≤$ such that

c1 ‖∇ûh‖2L2(K̂)
≤ |K|−1ϑ−1

K bK(uh, uh) ≤ c2 ‖∇ûh‖2L2(K̂)
.

After using the change of variable uh = ûh ◦ Φ−1
K , we infer that

c1 |det(J−1
K )|‖J−1

K ‖
−2‖∇uh‖2L2(K) ≤

bK(uh, uh)

|K|ϑK
≤ c2 |det(J−1

K )|‖J−1
K ‖
−2‖∇uh‖2L2(K).

The estimate (2.14) is obtained by using (2.9).

3. Space and time approximation. We introduce the time and space approx-
imation of (2.1) in this section.

3.1. Initial data and CFL number. Let us assume that we have at hand
an initial discrete field u0h ∈ Xh that reasonably approximates u0 and satisfies the
discrete maximum principle, i.e.,

(3.1) umin := ess inf
x∈Ω

u0(x) ≤ min
1≤i≤I

u0h(ai) ≤ max
1≤i≤I

u0h(ai) ≤ ess sup
x∈Ω

u0(x) := umax.

There are many ways to construct u0h ∈ Xh with the above properties, but we are
not going to discuss this question for the time being. A more precise statement is
made in §4.5.

Since we are going to adopt an explicit time stepping, it is necessary to introduce a
notion of CFL number; i.e., we need to estimate the local meshsize and the maximum
local wave speed on each mesh cell in Kh. We define the maximum wave speed

(3.2) β := ‖f‖Lip[umin,umax] := sup
umin≤v 6=w≤umax

sup
06=n∈Rd

|(f(v)− f(w))·n|
‖n‖`2 |v − w|

.

The above definition makes sense as long as umin < umax. We could extend the
definition of wave speed as in (3.6) in the case umin = umax, but this exercise is
useless since in this case the exact and the numerical solutions coincide and, the error
being zero, the error estimates are trivial. Let ∆t > 0 be the time step that we assume
to be uniform for simplicity. The CFL number, λ, is defined to be

(3.3) λ := max
K∈Kh

β∆t

hK
.

We additionally define µK := maxi∈I(K)
1
|K|
∫
K
ϕi(x) dx and µmax = maxK∈Kh µK ,

µmin = minK∈Kh µK . Note that µK = n−1
K = (d + 1)−1 for simplices and µK = 2−d

for parallelograms and cuboids.
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3.2. Numerical flux. Let vh ∈ Xh and set V := C(vh). We approximate f(vh)
by introducing fh,vh ∈W 1,∞(Ω) and f ′ij,vh ∈ L∞(Ω), i, j = 1, . . . , I, and we assume
that these quantities are defined such that the following holds for all i, j = 1, . . . , I
and all K ∈ Sij :∫

Si

∇·(fh,vh(x))ϕi(x) dx =
∑

j∈I(Si)

(Vj − Vi)
∫
Sij

f ′ij,vh(x)·∇ϕj(x)ϕi(x) dx,(3.4)

∫
K

|f ′ij,vh(x)·∇ϕj(x)|ϕi(x) dx ≤
∫
K

‖f ′(vh(·))·∇ϕj(x)‖L∞(K)ϕi(x) dx.(3.5)

where in the above definition the meaning of ‖f ′(vh(·))·∇ϕj(x)‖L∞(K) is

(3.6) ‖f ′(vh(·))·∇ϕj(x)‖L∞(K) := sup
ε→0
‖f ′(·)·∇ϕj(x)‖L∞(vh(K)+ε).

Note that this definition is not necessary if f ′ is continuous.
Example 3.1. (Exact flux) The identity (3.4) holds by setting fh,vh = f(vh) and

f ′ij,vh(x) = f ′(vh(x)) for all 1 ≤ i, j ≤ I. The inequality (3.5) is trivial.

Example 3.2. (Finite element flux) It is possible to set fh,vh =
∑I
j=1 f(Vj)ϕj ,

i.e., fh,vh = πh
(
f(vh)

)
, where recall that πh is the Lagrange interpolation operator.

In this case (3.4) holds with f ′ij,vh(x) =
f(Vj)−f(Vi)

Vj−Vi owing to the partition of unity

property. Recall that the ratio
f(Vj)−f(Vi)

Vj−Vi is well defined since f is Lipschitz con-

tinuous by assumption. The inequality (3.5) is a consequence of f being Lipschitz
continuous and the property (2.5).

3.3. Time stepping and maximum principle. Let tn ≥ 0 be the current
time and let ∆t > 0 be the current time step, i.e., tn+1 = tn + ∆t. Let unh ∈ Xh be
the approximation of u(·, tn) and let us set Un := C(unh).

The scheme is defined as follows: the nodal values of un+1
h ∈ Xh at time tn+1,

i.e., Un+1 := C(un+1
h ) are evaluated by

(3.7) Un+1
i = Uni −∆tm−1

i

∑
K⊂Si

(
νnKbK(unh, ϕi) +

∫
K

∇·(fnh )ϕi dx

)
,

where we set fnh := fh,unh . Note that the mass matrix is lumped and we have set
mi :=

∫
Si
ϕi(x) dx. The piecewise constant viscosity field at tn is defined as follows

on each cell K ∈ Kh:

(3.8) νnK = max
i 6=j∈I(K)

∫
Sij

(f ′nij,h·∇ϕj)+ϕi dx

−
∑
T⊂Sij bT (ϕj , ϕi)

.

where z+ := max(0, z) is the positive part and we have set f ′nij,h := f ′ij,unh
.

Theorem 3.1 (Discrete Maximum Principle). In addition to the above assump-
tions on the mesh-family and on the flux, assume that the CFL number is such that
λ ≤ µmin

µmax

1
(1+ϑ−1

min)
. Then the solution to (3.7) satisfies the local discrete maximum

principle, i.e., umin ≤ minj∈I(Si) U
n
j ≤ U

n+1
i ≤ maxj∈I(Si) U

n
j ≤ umax for all n ≥ 0.

Proof. See Guermond and Nazarov [12].
Remark 3.1. (Maximum principle) An immediate consequence of Theorem 3.1 is

that minx∈∆K
unh(x) ≤ minx∈K u

n+1
h (x) and maxx∈K u

n+1
h (x) ≤ maxx∈∆K

unh(x),
for all K ∈ Kh, where ∆K = ∪i∈I(K)Si.
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Remark 3.2. (SSP extension) Higher-order in time can be obtained by using a
Strong Stability Preserving time stepping (see e.g., Gottlieb et al. [11] for a review),
and Theorem 3.1 still holds in this case. The key property of SSP methods is that the
solution at the end of each time step is a convex combination of solutions of forward
Euler sub-steps. In the rest of the paper we restrict ourselves to the explicit Euler
time stepping to simplify the presentation.

Although the definition (3.8) is sufficient for the maximum principle to hold,
we are going to need a slightly stronger definition of the viscosity to establish error
estimates. In the rest of the paper we redefine νnK to be

(3.9) νnK = max
i 6=j∈I(K)

∑
K∈Sij

∫
K
‖f ′(unh(·))·∇ϕj(x)‖L∞(K)ϕi(x) dx

−
∑
T⊂Sij bT (ϕj , ϕi)

.

Note that this definition implies that

(3.10)
∑
K∈Sij

∫
K

‖f ′(unh(·))·∇ϕj(x)‖L∞(K)ϕi(x) dx ≤
∑
K∈Sij

ϑKνK |K|.

This is proved as follows: let Iij :=
∑
K∈Sij

∫
K
‖f ′(unh(·))·∇ϕj(x)‖L∞(K)ϕi dx, then

Iij = Iij

∑
K∈Sij ϑK |K|∑
K∈Sij ϑK |K|

=
∑
K∈Sij

ϑK |K|
Iij∑

K∈Sij ϑK |K|
≤
∑
K∈Sij

ϑK |K|νK .

3.4. Maximum time and boundary conditions. The boundary conditions
are assumed to be either periodic or the initial data is assumed to be compactly
supported. It the first case, there is no issue with the boundary conditions and the
maximum time of existence of the numerical solution is infinite, i.e., we set Tmax =
+∞. In the second case we are interested in the solution in a time interval [0, Tmax]
such that the domain of influence of u0 over [0, Tmax] does not reach the boundary of
Ω. Let us now estimate Tmax. The numerical maximum speed of propagation of the
information is at most h

∆t , i.e., nonzero values can propagate over one cell per time
step at most since the scheme is explicit and the mass matrix is lumped. Let Rmin

be the radius of the smallest ball in which the support of u0 can be inscribed. Up to
a translation we assume that 0 is the center of this ball. Let Rmax be the radius of
the largest ball inscribed in Ω and centered at 0. Then the numerical solution is well
defined and compactly supported in Ω for all times T ≤ Tmax := ∆t

h (Rmax −Rmin).

3.5. L2-stability. We establish the L2-stability properties of the method in this
section. We start by estimating the viscosity.

Lemma 3.2 (Viscosity bound). Under the assumptions of Theorem 3.1, the
following bound holds for all K ∈ Kh and all Kh,

νnK ≤ βh
−1
K

µmax

ϑmin
.(3.11)

Proof. Owing to the initialization assumption (3.1) and Theorem 3.1, unh(x) ∈
[umin, umax] for all n ≥ 0 and all x ∈ Ω; this implies that ‖f ′(unh(·))·∇ϕj‖L∞(K) ≤
β‖∇ϕj‖L∞(K). Let K ∈ Kh and let νnK be the viscosity coefficient defined in either
(3.8) or (3.9). The above inequality together with the definition of ϑ in (2.11), the
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definition of hK and the equality
∫
K
ϕi(x) dx = µK |K| implies that

νnK ≤ β max
i 6=j∈I(K)

‖∇ϕj‖L∞(Sij)

∫
Sij

ϕi dx

ϑmin|Sij |
≤ µmax

ϑmin

β

hK
.

This proves the statement.
Lemma 3.3 (L2-estimate). Under the assumptions of Theorem 3.1 and whether

the viscosity is defined using (3.8) or (3.9), there is a uniform constant λ0 > 0 such
that the following estimate holds for all λ ≤ λ0 and all N ≥ 0:

‖uN+1
h ‖2`2h +

N∑
n=0

∆t
∑
K∈Kh

νnKbK(unh, u
n
h) ≤ ‖u0

h‖2`2h .(3.12)

Proof. Let us multiply (3.7) by 2∆tUn+1
i and sum over i = 1, . . . , I,

‖un+1
h ‖2`2h + ‖un+1

h − unh‖2`2h
+ 2∆t

∑
K∈Kh

νnKbK(unh, u
n
h) = ‖unh‖2`2h +R1 +R2,

where R1 = 2∆t
∑
K∈Kh ν

n
KbK(unh, u

n
h−u

n+1
h ) and R2 = 2∆t

∫
Ω

(∇·fnh )(unh−u
n+1
h ) dx.

Since the mapping Xh×Xh 3 (vh, wh) 7−→ bK(vh, wh) ∈ R is a scalar product (see
(2.13)), we can estimate the first term R1 as follows:

|R1| ≤ 2∆t
∑
K∈Kh

νnKbK(unh, u
n
h)

1
2 bK(unh − un+1

h , unh − un+1
h )

1
2

≤ ε∆t
∑
K∈Kh

νnKbK(unh, u
n
h) + c λϑ−1

minε
−1µmax

K ‖unh − un+1
h ‖2L2(Ω),

where we used (3.11) and ε > 0 is an arbitrary positive number. The second term R2

is estimated by invoking Lemma 3.4

|R2| ≤ λcε−1‖unh − un+1
h ‖2`2h + ε∆t

∑
K∈Kh

νnKbK(unn, u
n
h).

Collecting the above estimates with ε = 1
2 gives

‖un+1
h ‖2`2h + (1− cλ)‖un+1

h − unh‖2`2h + ∆t
∑
K∈Kh

νnKbK(unh, u
n
h) ≤ ‖unh‖2`2h .

We conclude by assuming that λ ≤ c
2 and by summing the above estimates over n.

Lemma 3.4. For all ε > 0, there exists a uniform constant c, such that the
following holds for all g ∈ Xh:

(3.13)
∣∣∣ ∫

Ω

∇·(fnh (x)g(x) dx
∣∣∣ ≤ c

ε

β

h
‖g‖2`2h +

ε

2

∑
K∈Kh

νnKbK(unh, u
n
h).

Proof. Upon setting U := C(unh) and G := C(g), we infer that∫
Ω

∇·(fnh (x))g(x) dx =

I∑
i,j=1

(Uj − Ui)Gi
∫
Sij

f ′nij,h(x)·∇ϕj(x)ϕi(x) dx.
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Then using the definition of νnK , (2.13), (3.5) and (3.10) we deduce that

∣∣∣ ∫
Ω

∇·(fnh (x))g(x) dx
∣∣∣ ≤ I∑

i,j=1

ϑmax|Uj − Ui||Gi|
∑
K⊂Sij

|K|νnK

≤ ϑmax

∑
K∈Kh

νnK |K|
∑

j∈I(K)

∑
j 6=i∈I(K)

|Uj − Ui||Gi|

≤ c max
K∈Kh

(νnK)
1
2

∑
K∈Kh

(νnK)
1
2 bK(unh, u

n
h)

1
2

(
mi

∑
i∈I(K)

G2
i

) 1
2

.

Using the estimate (3.11) to bound νnK from above, we finally derive∣∣∣ ∫
Ω

∇·(fnh (x))g(x) dx
∣∣∣ ≤ c

ε

β

h
‖g‖2`2h +

ε

2

∑
K∈Kh

νnKbK(unh, u
n
h),

where ε > 0 is an arbitrary positive number. This completes the proof.

4. Error analysis. We are going to prove convergence to the entropy solution
by establishing an error estimate based on Kružkov’s doubling of the variables tech-
nique. The argument introduced by Kružkov [17] for proving uniqueness to scalar
conservation equations has been modified by Kuznecov [18] to prove error estimates
for numerical methods. This powerful, but cumbersome, technique is used for instance
in Cockburn and Gremaud [5, 6] to prove convergence of some stabilized finite ele-
ment techniques. We are going to adopt a variation of this method by reformulating
Kuznecov’s Lemma (see Lemma 2, p. 1492, in Kuznecov [18]) in the spirit of Bouchut
and Perthame [2, Thm 2.1] using a Gronwall type argument from [5, Prop 6.2] and [6,
Lemma 5.4]. The approximation result, Lemma A.2, is established in the Appendix.
This general result can be used for the analysis of other methods.

In the rest of the paper we restrict ourselves exclusively to the following discrete
flux:

(4.1) fh,vh = πh(f(vh)),

since we have not been able to prove entropy estimates with the exact flux fh,vh =
f(vh). We henceforth denote fnh := πh(f(unh)), where recall that πh is the Lagrange

interpolation operator. This definition implies that f ′nij,h(x) =
f(Unj )−f(Uni )

Unj −Uni
.

4.1. Global solution. We denote D := Rd if we solve a Cauchy problem in Rd
(i.e., D is open in this case) and D := Ω if Ω is the Rd-torus and periodic boundary
conditions are enforced (i.e., D is closed in this case). To summarize we define

(4.2) D :=

{
Rd if Cauchy problem,

Ω if periodic boundary conditions.

Let Tmax be the maximal time defined in §3.4. Let T ∈ (0, Tmax] be a fixed time. We
denote by W 1,∞

c (D×[0, T ];R) the set of the Lipschitz functions compactly supported
in D×[0, T ]. We define a global approximation, ũh, of the solution to (2.1) over the
domain Ω×[0, T ] as follows:

(4.3) ũh(x, t) = unh(x), if t ∈ [tn, tn+1), ∀x ∈ Ω, ∀t ∈ [0, T ].
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If a Cauchy problem is solved in Rd, we extend ũh by zero outside Ω and we abuse the
notation by denoting again ũh the extension in question. If the domain is periodic we
are going abuse the notation by using the same symbol to denote a function defined
over D and its periodic extension defined over Rd. The rest of the paper consists of
estimating ‖ũh(·, t)− u(·, t)‖L1(D) for all t ∈ (0, Tmax] using Lemma A.2.

4.2. Quasi-interpolations and Kružkov entropies. Let π̄h : L1(Ω) −→ Xh

be the quasi-interpolation operator defined as follows:

π̄h(ψ)(x) :=

I∑
i=1

Ψiϕi(x), ∀x ∈ Ω, Ψi := m−1
i

∫
Si

ψ(y)ϕi(y) dy,(4.4)

We will use the following standard approximation result.

Lemma 4.1. There exists a uniform constant c such that the following hods for
all ψ ∈W 1,p(D) and all p ∈ [1,+∞]:

‖ψ − π̄h(ψ)‖Lp(K) ≤ ch‖∇ψ‖Lp(∆K), ∆K := ∪i∈I(K)Si, ∀K ∈ Kh.(4.5)

Let k be a real number such that umin ≤ k ≤ umax and let

(4.6) η(v) = |v − k|, Fη(v) := sgn(v − k)(f(v)− f(k))

be the associated Kružkov entropy and entropy flux, where sgn(z) is the sign function
with the convention that sgn(0) = 0. Note that, using the convention that η′(k) = 0,
we have η′(v) = sgn(v − k), i.e., we can also write Fη(v) := η′(v)(f(v)− f(k)).

Lemma 4.2. Kružkov entropies are such that the following holds for all a, b ∈ R:

(4.7) η′(a)(a− b) = η(a)− η(b) + r(b, a), r(b, a) := η(b)(1− η′(a)η′(b)) ≥ 0.

Proof. If η′(a) = 0 then η(a) = 0 and the statement of the lemma reduces to
0 = −η(b) + η(b). Hence, it remains to consider the case η′(a) 6= 0. The equation
(4.7) is equivalent to

(4.8) η′(a)(a− b) = η(a)− η(b)η′(a)η′(b) = η′(a)(η(a)η′(a)− η(b)η′(b)).

Using the definition of η(u) = |u− k| and η′(u) = sgn(u− k), we obtain

(4.9) η(a)η′(a)− η(b)η′(b) = a− k − (b− k) = a− b

which proves the result.

Remark 4.1. (definition of πh(η′(vh)ψ)) Let ψ ∈ C0(Ω) and vh ∈ Xh with V :=

C(vh). In the rest of the paper we set πh(η′(vh)ψ)(x) :=
∑I
i=1 sgn(Vi−k)ψ(ai)ϕi(x) =∑I

i=1 η
′(vh(ai))ψ(ai)ϕi(x).

Remark 4.2. (General entropies) Lemma 4.2 can be reformulated for any smooth

entropy: i.e., η′(a)(a− b) = η(a)−η(b)+r(a, b) where r(a, b) =
∫ b
a

(b−x)η′′(ξ) dξ ≥ 0,
for all a, b.
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4.3. Discrete entropy inequalities. We first start by establishing entropy
inequalities using the Kružkov entropy family defined in (4.6). These inequalities are
the premises of Lemma A.2.

Lemma 4.3. Let T ≤ Tmax be some positive time. Let ψ be a non-negative
Lipschitz function compactly supported in D×[0, T ], ψ ∈W 1,∞

c (D×[0, T ];R+). Let N
be such that T ∈ [tN , tN+1); then we have

(4.10) ‖πh
(
η(ũh(·, T ))π̄hψ(·, tN )

)
‖`1h − ‖πh

(
η(ũh(·, 0))π̄hψ(·, 0)

)
‖`1h

−
∫ T

0

∫
Ω

(
η(ũh)∂tψ + Fη(ũh)·∇ψ

)
dx dt = −R1(ψ)−R2(ψ)−R3(ψ),

where R1, R2 and R3 are defined as follows:

R1(ψ) :=

∫ T

0

∫
Ω

η(ũh)∂tψ dx dt−
∫ T

0

∫
Ω

πh(η(ũh))∂tψ dx dt,

R2(ψ) :=

∫ T

0

∫
Ω

Fη(ũh)·∇ψ dx dt+

N−1∑
n=0

∆t

∫
Ω

(∇·fnh )πh(η′(un+1
h )π̄h(ψn+1)) dx,

R3(ψ) :=

N−1∑
n=0

[
I∑
i=1

miΨ
n+1
i r(Uni , U

n+1
i ) + ∆t

∑
K∈Kh

νKbK
(
unh, πh(η′(un+1

h )π̄h(ψn+1))
)]
.

Proof. Let π̄h be the quasi-interpolation operator defined in (4.4) and let us
set Ψi(τ) := (π̄hψ)(ai, τ) = 1

mi

∫
Si
ψ(x, τ)ϕi(x) dx (we henceforth denote Ψn+1

i :=

Ψi(t
n+1) to alleviate the notation). We multiply (3.7) by miη

′(Un+1
i )Ψn+1

i and upon
denoting ∆Un+1

i := Un+1
i − Uni and using Lemma 4.2, the term involving the time

increment is re-written as follows:

miΨ
n+1
i η′(Un+1

i )∆Un+1
i = miΨ

n+1
i ∆η(Un+1

i ) +miΨ
n+1
i r(Uni , U

n+1
i ).

We sum over n from 0 to N − 1 and re-arrange the time summation

N−1∑
n=0

miΨ
n+1
i η′(Un+1

i )∆Un+1
i = miΨ

N
i η(UNi )−miΨ

0
i η(U0

i )

N−1∑
n=0

−miη(Uni )∆Ψn+1
i +

N−1∑
n=0

miΨ
n+1
i r(Uni , U

n+1
i ).

We now sum over i, and upon observing that

mi∆Ψn+1
i =

∫
Si

(
ψ(x, tn+1)− ψ(x, tn)

)
ϕi(x) dx =

∫ tn+1

tn

∫
Si

∂tψ(x, t)ϕi(x) dx dt,

which also implies that

I∑
i=1

miη(Uni )∆Ψn+1
i =

∫ tn+1

tn

∫
Ω

∂tψ(x, t)

I∑
i=1

η(Uni )ϕi(x) dx dt

=

∫ tn+1

tn

∫
Ω

∂tψ(x, t)πh(η(unh)) dx dt =

∫ tn+1

tn

∫
Ω

∂tψ(x, t)πh(η(ũh)) dx dt,
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we obtain

I∑
i=1

N−1∑
n=0

miΨ
n+1
i η′(Un+1

i )∆Un+1
i =

I∑
i=1

mi(Ψ
N
i η(UNi )−Ψ0

i η(U0
i ))

−
∫ tN

0

∫
Ω

∂tψ(x, t)πh(ũh) dx dt+

N−1∑
n=0

I∑
i=1

miΨ
n+1
i r(Uni , U

n+1
i ).

The rest of the proof consists of realizing that

I∑
i=1

η′(Un+1
i )Ψn+1

i ϕi =

I∑
i=1

η′(un+1
h )(ai)π̄(ψn+1)(ai)ϕi = πh

(
η′(un+1

h )π̄(ψn+1)
)
.

The conclusion follows readily.

4.4. Entropy production estimates. We now have to estimate the remainders
in the right-hand side of (4.10), R1(ψ), R2(ψ) and R3(ψ), as needed in the a priori
estimate (A.6). In the rest of the paper we denote

(4.11) |ψ|∆n
K

:= |∇ψ|L∞(∆K×[tn,tn+1]) +
1

β
|∂tψ|L∞(K×[tn,tn+1]), ∀n > 0,

where recall that ∆K := ∪i∈I(K)Si.
Lemma 4.4. Assume that the discrete flux is defined by (4.1) and the artificial

viscosity is defined by (3.9). Then, there are uniform constants λ0, c > 0 such that
the following holds for all λ ≤ λ0:

(4.12) R1(ψ) +R2(ψ) +R3(ψ) ≥ −c β
N−1∑
n=0

∆t
∑
K∈Kh

hK |ψ|∆n
K
‖∇unh‖L1(K).

Proof. The key observation to establish the statement is to realize that R3(ψ)
produces dissipation in time and space, i.e., it generates two non-negative terms, and
these terms are essential to control R2(ψ). The term R1(ψ) is harmless and controlled
separately.
(1) Control of R3(ψ): Let us denote by R3,1(ψ) and R3,2(ψ) the two terms com-

posing R3(ψ). The first term R3,1(ψ) :=
∑N−1
n=0

∑I
i=1miΨ

n+1
i r(Uni , U

n+1
i ) is clearly

non-negative. This is the entropy dissipation created by the Euler time stepping. It
will be used later to control time discrepancies arising elsewhere. The second term
R3,2(ψ) := ∆t

∑N−1
n=0

∑
K∈KhνKbK

(
unh, πh(η′(un+1

h )π̄h(ψn+1))
)

is the source of en-
tropy dissipation induced by the artificial viscosity, up to a time discrepancy. This
term needs to be handled carefully to extract the entropy dissipation induced by
the artificial viscosity which will then be used to dominate space discrepancies aris-
ing elsewhere. Actually, it is particularly important to realize that this term induces
space-time dissipation, meaning that it is not a good idea to try to correct the time
discrepancies in R3,2(ψ). Let K ∈ Kh and let zh := πh

(
η′(un+1

h )π̄h(ψn+1)
)
, then

using (2.13), we infer that

bK(unh,zh) = ϑK |K|
∑

i∈I(K)

∑
I(K)3j<i

(Uni − Unj )(η′(Un+1
i )Ψn+1

i − η′(Un+1
j )Ψn+1

j ).
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Note here that we did not correct the time discrepancies. We now use (4.7) from
Lemma 4.2 to derive

(Uni − Unj )η′(Un+1
i ) = (Uni − Un+1

i )η′(Un+1
i ) + (Un+1

i − Unj )η′(Un+1
i )

= η(Uni )− η(Un+1
i )− r(Uni , Un+1

i ) + η(Un+1
i )− η(Unj ) + r(Unj , U

n+1
i )

= η(Uni )− η(Unj )− r(Uni , Un+1
i ) + r(Unj , U

n+1
i ),

which in turn implies that

(Uni −Unj )(η′(Un+1
i )Ψn+1

i −η′(Un+1
j )Ψn+1

j ) = Ψn+1
i r(Unj , U

n+1
i )+Ψn+1

j r(Uni , U
n+1
j )

−Ψn+1
i r(Uni , U

n+1
i )−Ψn+1

j r(Unj , U
n+1
j ) + (Ψn+1

i −Ψn+1
j )

(
η(Uni )− η(Unj )

)
≥ Ψn+1

i r(Unj , U
n+1
i ) + Ψn+1

j r(Uni , U
n+1
j )−Ψn+1

i r(Uni , U
n+1
i )

−Ψn+1
j r(Unj , U

n+1
j )− chK |ψ|∆n

K
|Uni − Unj |,

where we used the shape regularity of the mesh and recall that we denote |ψ|∆n
K

:=

|∇ψ|L∞(∆K×[tn,tn+1]) + 1
β |∂tψ|L∞(K×[tn,tn+1]) to shorten the notation. This estimate

is essential ; it means that, up to time discrepancies r(Uni , U
n+1
i ) + r(Unj , U

n+1
j ),

which are present in R3,1(ψ), the bilinear form bK induces space-time dissipation
since r(Unj , U

n+1
i ) + r(Uni , U

n+1
j ) ≥ 0. In conclusion, using the estimate (3.11) we

obtain

νKbK(unh, zh) ≥ νKϑK |K|
∑

i 6=j∈I(K)

r(Unj , U
n+1
i )Ψn+1

i

− νKϑK |K|
∑

i∈I(K)

2(nK − 1)r(Uni , U
n+1
i )Ψn+1

i − chK |ψ|∆n
K
νK |K|

∑
i 6=j∈I(K)

|Uni −Unj |

≥ νKϑK |K|
∑

i 6=j∈I(K)

r(Unj , U
n+1
i )Ψn+1

i

− cβh−1
K

∑
i∈I(K)

mir(U
n
i , U

n+1
i )Ψn+1

i − c′βhK |ψ|∆n
K
‖∇unh‖L1(K)

Putting together all the above estimates, we infer that

R3(ψ) ≥ −cβ
N−1∑
n=0

∆t
∑
K∈Kh

hK |ψ|∆n
K
‖∇unh‖L1(K) + (1− c′λ)

N−1∑
n=0

I∑
i=1

mir(U
n
i , U

n+1
i )Ψn+1

i

+

N−1∑
n=0

∆t
∑
K∈Kh

νKϑK |K|
∑

i6=j∈I(K)

r(Unj , U
n+1
i )Ψn+1

i .(4.13)

(2) Control of R2(ψ): Recall that

R2(ψ) :=

N−1∑
n=0

∫ tn+1

tn

∫
Ω

Fη(unh)·∇ψ dx dt+

N−1∑
n=0

∆t

I∑
i=1

I2(i),

where we have set I2(i) :=
∫

Ω
(∇·fnh )ϕi(x)η′(Un+1

i )Ψn+1
i dx. We now define the

approximate entropy flux

F n
η,h(x) := πh

(
F (unh(x))

)
=

I∑
j=1

F (Unj )ϕj(x).
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Then, upon introducing ψn(x) = 1
∆t

∫ tn+1

tn
ψ(x, t) dt, we re-write I2(i) as follows:

I2(i) =

∫
Ω

(
η′(Un+1

i )∇·fnh −∇·F n
η,h

)
ϕi(x)Ψn+1

i dx

+

∫
Ω

(∇·F n
η,h)ϕi(x)(Ψn+1

i − ψn(x)) dx

+

∫
Ω

∇·(F n
η,h − Fη(unh))ψn(x)ϕi(x) dx +

∫
Ω

∇·(Fη(unh))ψn(x)ϕi(x) dx,

which, after using the partition of unity property, proves that R2(ψ) = R2,1(ψ) +
R2,2(ψ) +R2,3(ψ), where

R2,1(ψ) :=

N−1∑
n=0

∆t

I∑
i=1

∫
Ω

(
η′(Un+1

i )∇·fnh −∇·F n
η,h

)
ϕi(x)Ψn+1

i dx

R2,2(ψ) :=

N−1∑
n=0

∆t

I∑
i=1

∫
Ω

(∇·F n
η,h)ϕi(x)(Ψn+1

i − ψn(x)) dx

R2,3(ψ) :=

N−1∑
n=0

∆t

I∑
i=1

∫
Ω

∇·(F n
η,h − Fη(unh))ψn(x)ϕi(x) dx

Now we estimate R2,1(ψ). Recalling that we have set fnh = πh(f(unh)) and using again
the partition of unity property, we obtain∫

Ω

(∇·fnh )ϕi(x)η′(Un+1
i )Ψn+1

i dx

=
∑

j∈I(Si)

∫
Si

(f(Unj )− f(k))·∇ϕj(x)ϕi(x)η′(Un+1
i )Ψn+1

i dx

=
∑

j∈I(Si)

∫
Si

f(Unj )− f(k)

Unj − k
·∇ϕj(x)ϕi(x)(Unj − k)η′(Un+1

i )Ψn+1
i dx,

with the convention that
f(Unj )−f(k)

Unj −k
should be replaced by 0 when Unj = k. This

modification is not important because
f(Unj )−f(k)

Unj −k
·∇ϕj(x)ϕi(x)(Unj − k) = (f(Unj )−

f(k))·∇ϕj(x), and this number is zero if Unj = k. Now we evaluate exactly (Unj −
Uni )η′(Un+1

i ). We use (4.7) from Lemma 4.2 to derive

(Unj − k)η′(Un+1
i ) = η(Unj )− η(k)− r(Unj , Un+1

i ) + r(k, Un+1
i ),

= η(Unj )− r(Unj , Un+1
i ).

Recalling that η(Unj ) = η′(Unj )(Unj − k) and Fη(Unj ) = η′(Unj )(f(Unj ) − f(k)), we
conclude that∫

Ω

(∇·fnh )ϕi(x)η′(Un+1
i )Ψn+1

i dx

=
∑

j∈I(Si)

∫
Si

f(Unj )− f(k)

Unj − k
·∇ϕj(x)ϕi(x)(η(Unj )− r(Unj , Un+1

i ))Ψn+1
i dx

=

∫
Si

(∇·F n
η,h)ϕi(x)Ψn+1

i dx + J2(i),
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where

J2(i) = −
∑
K∈Si

∑
j∈I(K)

∫
K

f(Unj )− f(k)

Unj − k
·∇ϕj(x)ϕi(x)r(Unj , U

n+1
i )Ψn+1

i dx.

This proves that

R2,1(ψ) =

N−1∑
n=0

∆t

I∑
i=1

J2(i).

We now have a little problem since in order to use the last positive term in the estimate
of R3(ψ), see (4.13), we need to produce a local viscosity using a local wave speed. The
purpose of the coming developments is to transform the above integral to invoke local
speeds only. Let us rewrite J2(i) as a sum of integrals: J2(i) =

∑
K∈Si J2(i,K), with

obvious notation. Let K be a cell in Si. Now we observe that if k ≤ minj∈I(K)(U
n
j )

or maxj∈I(K)(U
n
j ) ≤ k then η′(Unj ) = η′(Uni ) for all j ∈ I(K), which means that in

this case

r(Unj , U
n+1
i )

Unj − k
=

1

Unj − k
η(Unj )(1− η′(Unj )η′(Un+1

i ))

= η′(Unj )(1− η′(Unj )η′(Un+1
i )) = η′(Uni )(1− η′(Uni )η′(Un+1

i )).

Let us then assume that k ≤ minj∈I(K)(U
n
j ) or maxj∈I(K)(U

n
j ) ≤ k, then the partition

of unity property together with the above argument implies that

J2(i,K) = −
∑

j∈I(K)

∫
K

f(Unj )·∇ϕj(x)ϕi(x)η′(Uni )(1− η′(Uni )η′(Un+1
i ))Ψn+1

i dx =

∑
j∈I(K)

∫
K

f(Unj )−f(Uni )

Uni −Unj
·∇ϕj(x)ϕi(x)(Unj −Uni )η′(Uni )(1− η′(Uni )η′(Un+1

i ))Ψn+1
i dx

≥ −
∑

i 6=j∈I(K)

∫
K

∣∣∣∣f(Unj )−f(Uni )

Unj −Uni
·∇ϕj(x)

∣∣∣∣ϕi(x)
(
r(Uni , U

n+1
i ) + r(Unj , U

n+1
i )

)
Ψn+1
i dx,

where we used

(Unj − Uni )η′(Uni )(1− η′(Uni )η′(Un+1
i )) = (Unj − k)η′(Uni )(1− η′(Uni )η′(Un+1

i )

+ (k − Uni )η′(Uni )(1− η′(Uni )η′(Un+1
i )

= r(Unj , U
n+1
i )− r(Uni , Un+1

i ),

which implies that

|(Unj − Uni )η′(Uni )(1− η′(Uni )η′(Un+1
i ))| ≤ r(Uni , Un+1

i ) + r(Unj , U
n+1
i ).

Otherwise, if minj∈I(K)(U
n
j ) ≤ k ≤ maxj∈I(K)(U

n
j ), then∫

K

f(Unj )− f(k)

Unj − k
·∇ϕj(x)ϕi(x)r(Unj , U

n+1
i )Ψn+1

i dx

= r(Unj , U
n+1
i )Ψn+1

i

1

Unj − k

∫ Unj

k

∫
K

f ′(s)·∇ϕj(x)ϕi(x) dx ds

≥ −r(Unj , Un+1
i )Ψn+1

i

∫
K

‖f ′(unh(·))·∇ϕj(x)‖L∞(K)ϕi(x) dx,
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where we used that [minj∈I(K)(U
n
j ),maxj∈I(K)(U

n
j )] ⊂ unh(K). Hence, we proved

that the following holds in all the cases

J2(i,K) ≥ −
∑

i6=j∈I(K)

∫
K

‖f ′(unh(·))·∇ϕj(y)‖L∞(K)ϕi(x)
(
r(Uni , U

n+1
i )

+ r(Unj , U
n+1
i )

)
Ψn+1
i dx.

Then upon invoking the bound (3.10), we have

J2(ψ) ≥ −
∑

i 6=j∈I(Si)

∑
K∈Sij

∫
K

‖f ′(unh(·))·∇ϕj(y)‖L∞(K)ϕi(x)
(
r(Uni , U

n+1
i )

+ r(Unj , U
n+1
i )

)
Ψn+1
i dx

≥ −
∑

i6=j∈I(Si)

(
r(Uni , U

n+1
i ) + r(Unj , U

n+1
i )

)
Ψn+1
i

∑
K∈Sij

ϑKνK |K|.

Now we are able to conclude that there is a uniform c > 0 such that

R2,1(ψ) ≥ −
N−1∑
n=0

∆t
∑

K∈Kh(ψ)

νKϑK |K|
∑

i6=j∈I(K)

r(Unj , U
n+1
i )Ψn+1

i

− c λ
N−1∑
n=0

I∑
i=1

mir(U
n
i , U

n+1
i )Ψn+1

i .

The term R2,2(ψ) is controlled by proceeding as in the proof of Lemma 3.4. Namely,
we rewrite∫

Ω

(Ψn+1
i − ψn(x))(∇·F n

η,h)ϕi(x) dx

=
∑

j∈I(Si)

∫
Si

(Ψn+1
i − ψn(x))η′(Unj )(f(Unj )− f(k))·∇ϕj(x)ϕi(x) dx.

Here, again we need to localize the estimate by getting rid of f(k). Let us consider
K ∈ Si. Let us assume first that k ≤ minj∈I(K)(U

n
j ) or maxj∈I(K)(U

n
j ) ≤ k, then

the partition of unity property implies that we can replace f(k) by f(Uni ), i.e.,∫
K

(Ψn+1
i − ψn(x))(∇·F n

η,h)ϕi(x) dx

=
∑

j∈I(K)

∫
K

(Ψn+1
i − ψn(x))η′(Uni )(f(Unj )− f(Uni ))·∇ϕj(x)ϕi(x) dx

=
∑

j∈I(K)

∫
K

(Ψn+1
i − ψn(x))η′(Uni )(Unj − Uni )

f(Unj )− f(Uni )

Unj − Uni
·∇ϕj(x)ϕi(x) dx

This implies that∫
K

(Ψn+1
i − ψn(x))(∇·F n

η,h)ϕi(x) dx

≥ −‖Ψn+1
i − ψn‖L∞(K)

∑
j∈I(K)

|Unj − Uni |
∫
K

‖f ′(unh(·))·∇ϕj‖L∞(K)ϕi dx.
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If minj∈I(K)(U
n
j ) ≤ k ≤ maxj∈I(K)(U

n
j ) ≤ k, by proceeding as above we have∫

K

(Ψn+1
i − ψn(x))(∇·F n

η,h)ϕi(x) dx

≥ −‖Ψn+1
i − ψn‖L∞(K)

∑
j∈I(K)

|Unj − k|
∫
K

‖f ′(unh(·))·∇ϕj‖L∞(K)ϕi dx

≥ −c‖Ψn+1
i − ψn‖L∞(K)

∑
j∈I(K)

|Unj − Uni |
∫
K

‖f ′(unh(·))·∇ϕj‖L∞(K)ϕi dx,

where in the last inequality we used that k is a convex combination of (Unl )l∈I(K)

and we used the triangle inequality repeatedly. Upon invoking the bound (3.10), the
above argument implies that the following holds independently of the value of k:∫

Ω

(Ψn+1
i − ψn(x))(∇·F n

η,h)ϕi(x) dx ≥

− c(1 + λ)
∑
K∈Si

|ψ|∆n
K
hKν

n
K |K|

∑
i∈I(K)

|Unj − Uni | ≥ −c β
∑
K∈Kh

hK |ψ|∆n
K
‖∇unh‖L1(K).

In conclusion, R2,2(ψ) ≥ −c β
∑N−1
n=0 ∆t

∑
K∈KhhK |ψ|∆n

K
‖∇unh‖L1(K). Now we esti-

mate R2,3(ψ). The partition of unity property implies that

R2,3(ψ) :=

N−1∑
n=0

∆t

I∑
i=1

∫
Ω

∇·(F n
η,h − Fη(unh))ψn(x)ϕi(x) dx

= −
N−1∑
n=0

∆t

∫
Ω

(F n
η,h − Fη(unh))·∇ψn(x) dx

= −
N−1∑
n=0

∆t
∑
K∈Kh

∑
j∈I(K)

∫
K

(Fη(Unj )− Fη(unh))·∇ψn(x)ϕj(x) dx

≥ −c β
N−1∑
n=0

∆t
∑
K∈Kh

|ψ|∆n
K

∑
j∈I(K)

|K||Unj − unh|,

where we used the Lipschitz continuity of the entropy flux. In conclusion, R2,3(ψ) ≥
−cβ

∑N−1
n=0 ∆t

∑
K∈KhhK |ψ|∆n

K
‖∇unh‖L1(K). Putting together the above estimates we

obtain,

R2(ψ) ≥ −
N−1∑
n=0

∆t
∑
K∈Kh

νKϑK |K|
∑

i 6=j∈I(K)

r(Unj , U
n+1
i )Ψn+1

i

− c λ
N−1∑
n=0

I∑
i=1

mir(U
n
i , U

n+1
i )Ψn+1

i − c′ β
N−1∑
n=0

∆t
∑
K∈Kh

hK |ψ|∆n
K
‖∇unh‖L1(K).

(3) Control of R1(ψ): Recall that R1(ψ) =
∫ T

0

∫
Ω

(η(ũh) − πh(η(ũh)))∂tψ dx dt. Us-
ing the partition of unity property of the shape functions, we have η(ũh(x, t)) =∑I
i=1 η(ũh(x, t))ϕi(x) for all x ∈ K, which in turn implies that that∫

Ω

(η(ũh)− πh(η(ũh)))∂tψ dx =

I∑
i=1

∫
Si

(η(ũh)− η(ũh(ai, t)))ϕi∂tψ dx
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The conclusion follows readily since |η(a) − η(b)| ≤ |a − b| and ũh is a discrete
function, i.e., the following inequality holds for all t ∈ [tn, tn+1):

∫
K
|ũh(x, t) −

ũh(ai, t)||∂tψ(x, t)|dx ≤ c hK‖∇unh‖L1(K)‖∂tψ‖L∞(K×(tn,tn+1)) for all K ∈ Kh. In
conclusion we have

R1(ψ) ≥ −c β
N−1∑
n=0

∆t
∑
K∈Kh

hK |ψ|∆n
K
‖∇unh‖L1(K).

(4) Now we conclude by combining all the above estimates

R1(ψ) +R2(ψ) +R3(ψ) ≥ (1− cλ)

N−1∑
n=0

I∑
i=1

mir(U
n
i , U

n+1
i )Ψn+1

i

−c′ β
N−1∑
n=0

∆t
∑
K∈Kh

hK |ψ|∆n
K
‖∇unh‖L1(K).

The conclusion follows by assuming that the CFL number, λ, is small enough.

4.5. Convergence estimates. The purpose of this section is to derive an error
estimate; this will be done by using Lemma A.2 together with Lemma 4.4. We
henceforth assume that u0 ∈ BV (Ω) and that u0

h is evaluated so that

(4.14) ‖u0 − u0
h‖L1(Ω) ≤ ch|u|BV (Ω).

We introduce three mutually exclusive assumptions that we henceforth refer to:
(H1), (H2), (H3). In the first case, (H1), we assume that there is a uniform BV bound
on the approximate solution uh, i.e., there is a uniform constant c such that

(H1)

N−1∑
n=0

∆t
∑
K∈Kh

hK‖∇unh‖L1(K) ≤ cT |u0|BV (Ω).

The proof of this estimate in one space dimension is standard and can be done by using
Harten’s Lemma [15, Lemma 2.2] (the details are left to the reader). We conjecture
that this estimate is true in every space dimension on fairly general meshes, but this
question is still open. In the second case, (H2), we assume that the flux does not
degenerate in the sense that there is a uniform constant α > 0 so that,

(H2) inf
06=n∈Rd

‖f ′(·)·n‖L∞([umin,umax])

‖n‖`2
≥ αβ,

where the L∞-norm is defined in (3.6). In the third case, (H3), we introduce a
parameter α > 0 and we change the definition of the viscosity over each cell K ∈ Kh
so that the new viscosity is equal to max(νK , α

β
hK

), namely we modify (3.9) as follows:

(H3) νnK = max

(
αβ

hK
, max
i6=j∈I(K)

∑
K∈Sij

∫
K
‖f ′(uh(·))·∇ϕj(x)‖L∞(K)ϕi(x) dx

−
∑
T⊂Sij bT (ϕj , ϕi)

)
.

This assumption is pretty standard; for instance it is similar to assumption (2.4b) in
Cockburn and Gremaud [5], it is also similar to the fact that ε1 in (2.5) in [5] does
not vanish when β = 0.

We are in measure to state the main result of the paper.
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Theorem 4.5 (L∞t (L1
x) error estimate). In addition to (2.2), assume also that

u0 ∈ BV (Ω), the discrete flux is defined by (4.1) and the artificial viscosity is defined
by (3.9). Then, there exists a uniform constant λ0 > 0 such that the following holds
for all λ ≤ λ0:
(i) Under assumption (H1), there is a uniform constant c such that

(4.15) ‖u(·, T )− ũh(·, T )‖L1(Ω) ≤ ch
1
2

√
βT |u0|BV (Ω).

(ii) Under assumption (H2) or (H3), there is a uniform constant c such that

(4.16) ‖u(·, T )− ũh(·, T )‖L1(Ω) ≤ c h
1
4 |Ω| 12 (βT )

1
4 |u0|

1
2

BV (Ω)|u
0
h|

1
2
∗ .

where |u0
h|∗ := (‖u0

h‖2L2(Ω) − ‖u
0
h‖2L2(Ω))

1
2 and v := 1

|Ω|
∫

Ω
v(x) dx.

Proof. Owing to Lemma 4.3 and Lemma 4.4 it is legitimate to apply Lemma A.2
with σh = 0, Th = tN and

ΛT (ψ) = c β

N−1∑
n=0

∆t
∑
K∈Kh

hK |ψ|∆n
K
‖∇unh‖L1(K),(4.17)

where we recall that N = N(T ) is defined by T ∈ [tN , tN+1). Then using Lemma A.2
and the BV bound on u0, we have ‖u0 − u0h‖L1(Ω) ≤ ch|u0|BV (Ω) and obtain

‖u(·, T )− ũh(·, T )‖L1(Ω) ≤ c ((ε+ h)|u0|BV (Ω) + Λ∗).

and the rest of the proof consists of estimating

Λ∗ := sup
0≤T̃≤T

∫ T̃
0

∫
D

ΛT̃ (φ) dy ds

Γδ(T̃ )
,

where φ(x,y, t, s) := ωε(x − y)ωδ(t − s) has been defined in (A.2) and we denote
Γδ(τ) :=

∫ τ
0
ωδ(s)ds for any τ ≥ 0. From now on we assume that h ≤ ε.

Consider T̃ ∈ (0, T ] and define Ñ such that tÑ ≤ T̃ < tÑ+1. We have that

∫ T̃

0

∫
D

ΛT̃ (φ) dy ds = c β

Ñ−1∑
n=0

∆t
∑
K∈Kh

hK‖∇unh‖L1(K)

∫ T̃

0

∫
D

|φ|∆n
K

dy ds.

Recalling the definition |φ|∆n
K

:= |∇xφ|L∞(∆K×[tn,tn+1]) + 1
β |∂tφ|L∞(K×[tn,tn+1]),

and recalling that h ≤ ε, it can be shown that there is a uniform constant c > 0 such
that

|φ(·,y, ·, s)|∆n
K
≤ c

∆t|K|

∫ tn+1

tn

∫
∆K

(
1

β
|∂tφ(x,y, t, s)|+ ‖∇xφ(x,y, t, s)‖) dx dt,

for all 0 ≤ n ≤ Ñ − 1, which implies that∫ T̃

0

∫
D

|φ(·,y, ·, s)|∆n
K

dy ds ≤

c

∆t|K|

∫ tn+1

tn

∫
∆K

∫ T̃

0

∫
D

(
1

β
|∂tφ(x,y, t, s)|+ ‖∇xφ(x,y, t, s)‖) dy dsdx dt.
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Now we evaluate
∫ T̃

0

∫
D

( 1
β |∂tφ(x,y, t, s)| + ‖∇xφ(x,y, t, s)‖) dy ds. Using that n ≤

Ñ − 1, since ΛT̃ involves a sum for n = 0 to n = Ñ − 1 (see (4.17)), we infer that

0 ≤ tn ≤ t ≤ tn+1 ≤ tÑ ≤ T̃ , which implies that 0 ≤ t ≤ T̃ . We then can apply
Lemma A.1 for all t ∈ [tn, tn+1]∫ T̃

0

∫
D

(
1

β
|∂tφ(x,y, t, s)|+ ‖∇xφ(x,y, t, s)‖) dy ds ≤ cΓδ(T̃ )

βδ
+ c′

Γδ(T̃ )

ε
≤ c′′Γδ(T̃ )

ε
.

This computation in turn implies that∫ T̃

0

∫
D

|φ(·,y, ·, s)|∆n
K

dy ds ≤ cΓδ(T̃ )

ε
.

Using the above bound, we estimate
∫ T̃

0

∫
D

ΛT̃ (φ) dy ds for T̃ ∈ (0, T ] as follows:∫ T̃

0

∫
D

ΛT̃ (φ) dy ds ≤ c β
N−1∑
n=0

∆t
∑
K∈Kh

hK‖∇unh‖L1(K)
Γδ(T̃ )

ε
.

Therefore, we obtain that for any T̃ , 0 ≤ T̃ ≤ T , we have∫ T̃
0

∫
D

ΛT̃ (φ) dy ds

Γδ(T̃ )
≤ cβ

ε

N−1∑
n=0

∆t
∑
K∈Kh

hK‖∇unh‖L1(K).

In conclusion, taking the supremum over T̃ ∈ [0, T ], we infer that

(4.18) Λ∗ ≤ cβ

ε

N−1∑
n=0

∆t
∑
K∈Kh

hK‖∇unh‖L1(K).

We finish the proof of the theorem by bounding the right-hand side of (4.18) in each
of the three cases (H1),(H2) and (H3).
(1) Assumption (H1): Using (H1) we infer that

Λ∗ ≤ cβ

ε
hT |u0|BV (Ω).

Then we have

‖u(·, T )− ũh(·, T )‖L1(Ω) ≤ c ((ε+ h)|u0|BV (Ω) +
hβT

ε
|u0|BV (Ω)).

It possible to optimize the choice of ε in the above estimate. We choose ε2 = βhT
which implies that

‖u(·, T )− ũh(·, T )‖L1(Ω) ≤ c
√
h
√
βT |u0|BV (Ω).

This proves the error estimate in the case of assumption (H1), see (4.15).
(2) Assumption (H2) or (H3): The L2-estimate (3.12) implies that

N−1∑
n=0

∆t
∑
K∈Kh

νKbK(unh, u
n
h) ≤ ‖u0

h‖2`2h − ‖u
N
h ‖2`2h .
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Recall that u0
h := 1

|Ω|
∫

Ω
u0
h(x) dx. Using the mass conservation property of the

method,
∫

Ω
u0
h(x) dx =

∫
Ω
uNh (x) dx, we have that

‖u0
h‖2`2h = |Ω|(u0

h)2 ≤ ‖uNh ‖2`2h .

Using the above and the fact that u0
h is orthogonal to u0

h − u0
h with respect to both

the L2(Ω) and `2h scalar products, we obtain

N−1∑
n=0

∆t
∑
K∈Kh

νKbK(unh, u
n
h) ≤ ‖u0

h‖2`2h − ‖u
N
h ‖2`2h ≤ ‖u

0
h‖2`2h − ‖u

0
h‖2`2h = ‖u0

h − u0
h‖2`2h

≤ c ‖u0
h − u0

h‖2L2(Ω) = c
(
‖u0

h‖2L2(Ω) − ‖u
0
h‖2L2(Ω)

)
.

This bound together with (2.14) implies that there are uniform constants c, c′ > 0
such that

c′β

N−1∑
n=0

∆t
∑
K∈Kh

hK‖∇unh‖2L2(K) ≤
N−1∑
n=0

∆t
∑
K∈Kh

νKbK(unh, u
n
h) ≤ c (‖u0

h‖2L2(Ω)−‖u
0
h‖2L2(Ω))

where we used that each of the assumptions (H2) and (H3) implies that there is c′′ > 0

such that νk ≥ c′′ αβhK . It is then possible to estimate
∑N−1
n=0 ∆t

∑
K∈KhhK‖∇u

n
h‖L1(K)

in (4.18). We have that

N−1∑
n=0

∆t
∑
K∈Kh

hK‖∇unh‖L1(K) =

N−1∑
n=0

∆t
∑
K∈Kh

hK

∫
K

|∇unh|dx

≤
(N−1∑
n=0

∆t
∑
K∈Kh

hK |K|
) 1

2
(N−1∑
n=0

∆t
∑
K∈Kh

hK

∫
K

|∇unh|2 dx

) 1
2

≤ ch 1
2 β−

1
2T

1
2 |Ω| 12 (‖u0

h‖2L2(Ω) − ‖u
0
h‖2L2(Ω))

1
2 ,

which in turn implies that

Λ∗ ≤ c

ε
|Ω|h 1

2 (βT )
1
2 (‖u0

h‖2L2(Ω) − ‖u
0
h‖2L2(Ω))

1
2 .

Then we have

‖u(·, T )−ũh(·, T )‖L1(Ω) ≤ c ((ε+h)|u0|BV (Ω)+
|Ω|h 1

2 (βT )
1
2

ε
(‖u0

h‖2L2(Ω)−‖u
0
h‖2L2(Ω))

1
2 ),

which after optimizing ε gives

‖u(·, T )− ũh(·, T )‖L1(Ω) ≤ c h
1
4 |Ω| 12 (βT )

1
4 |u0|

1
2

BV (Ω)(‖u
0
h‖2L2(Ω) − ‖u

0
h‖2L2(Ω))

1
4

Recalling the definition |u0
h|∗ := (‖u0

h‖2L2(Ω) − ‖u
0
h‖2L2(Ω))

1
2 , we finally obtain

‖u(·, T )− ũh(·, T )‖L1(Ω) ≤ c h
1
4 |Ω| 12 (βT )

1
4 |u0|

1
2

BV (Ω)|u
0
h|

1
2
∗ .

This concludes the proof.
Remark 4.3. (Higher-order approximation) The method described in this paper

(see (3.7)) is only first-order, but the proposed methodology can be modified to make
it formally second-order as shown in Guermond et al. [14]. The main idea consists of
combining the present first-order method and a high-order entropy viscosity method
(see Guermond et al. [13]) by using the flux correction technique of Boris–Book–
Zalesak, (see Boris and Book [1], Zalesak [19]).
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Appendix A. Kružkov estimates revisited. We revisit general results es-
tablished in Proposition 3.1 from Cockburn et al. [7], Lemma 3.1 from Cockburn and
Gremaud [5], Proposition 5.3 from Cockburn and Gremaud [6], and Proposition 3.18
from Holden and Risebro [16]. The route that we follow consists of reformulating
Kuznecov’s Lemma (see Lemma 2, p. 1492, in Kuznecov [18]) in the spirit of Bouchut
and Perthame [2, Thm 2.1] using a Gronwall type argument from [5, Prop 6.2] and
[6, Lemma 5.4]. Our objective is to reduce the establishing of an a priori estimate
to that of entropy inequalities using only the Kružkov entropy family, i.e., we do not
want to invoke smooth entropies and to deal with the associated loss of symmetry
of the entropy flux. Theorem 2.1 from [2] is not sufficient for this purpose since it
requires an a priori bound on the BV-norm of the approximate solution. The results
[7, Proposition 3.1], [5, Lemma 3.1] and [6, Proposition 5.3] are not appropriate either
since they mix the error estimation with the proof of the entropy inequalities, making
the technique very difficult to follow and to apply (at least to us). The main result
of this section is Lemma A.2.

We introduce δ > 0 and ε = βδ, and we define two mollifiers ωδ and ωε

(A.1) ωδ(t) :=


1
3δ |t| ≤ δ,
2δ−|t|

3δ2 δ ≤ |t| ≤ 2δ,

0 otherwise,

ωε(x) := Πd
l=1ωε(xl), x := (x1, . . . , xd).

Now, following an idea of Kružkov [17] we define

(A.2) φ(x,y, t, s) := ωε(x− y)ωδ(t− s), ∀(y, s) ∈ D×[0, T ].

Moreover, as done in Cockburn and Gremaud [6, 5], we set Γδ(t) :=
∫ t

0
ωδ(s) ds.

Lemma A.1. There c > 0, uniform, such that the following holds for all t ∈ [0, T ]:∫ T

0

|ω′δ(s− t)|ds ≤ c
Γδ(T )

δ
,(A.3)

1

2
Γδ(T ) ≤

∫ T

0

ωδ(s− t) ds ≤ 2 Γδ(T ).(A.4)

Proof. It can be shown that δ
∫ T

0
|ω′δ(s − t)|ds ≤ 2

∫ T
0
|ω2δ(s − t)|ds, which in

turn implies that

δ

∫ T

0

|ω′δ(s− t)|ds ≤ 2

(∫ t

0

ω2δ(s− t) ds+

∫ T

t

ω2δ(s− t) ds

)
≤ 2(Γ2δ(t) + Γ2δ(T − t)) ≤ 4Γ2δ(T ).

We conclude by showing that there is a uniform constant c so that Γ2δ(T ) ≤ cΓδ(T ).
The details are omitted. This proves (A.3). The two inequalities in (A.4) are a

consequence of
∫ T

0
ωδ(s− t) ds = Γδ(t) + Γδ(T − t) and

∫ T
T
2
ωδ(s) ds ≤

∫ T
2

0
ωδ(s) ds.

Lemma A.2. Assume (2.2) and u0 ∈ BV (Ω). Let ũh : D×[0, T ] −→ R be an
approximate solution of (2.1) as defined in §4.1 with T ∈ [0, Tmax]. Assume that
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the following holds for all k ∈ [umin, umax] and all non-negative Lipschitz function ψ
compactly supported in D×[0, T ]:

(A.5) −
∫ T

0

∫
D

(
|ũh − k|∂tψ + sgn(ũh − k)(f(ũh)− f(k))·∇ψ

)
dx dt

+ ‖πh
(
(ũh(·, T )− k)π̄hψ(·, Th)

)
‖`1h − ‖πh

(
(ũh(·, 0)− k)π̄hψ(·, σh)

)
‖`1h ≤ ΛT (ψ),

where ‖ · ‖`1h is defined in (2.7), |T − Th| ≤ γ∆t, |0 − σh| ≤ γ∆t, where γ > 0 is a

uniform constant, and ΛT (ψ) is a bounded functional on Lipschitz functions. Then
the following estimate holds

(A.6) ‖u(·, T )− ũh(·, T )‖L1(Ω) ≤ c (‖u0 − u0
h‖L1(Ω) + (ε+ h+ β∆t)|u0|BV (Ω) + Λ∗).

where Λ∗ := sup0≤T̃≤T

∫ T̃
0

∫
D

ΛT̃ (φ) dy ds

Γδ(T̃ )
and φ is defined in (A.2).

Proof. Following the work of Kružkov [17] and Kuznecov [18], we are going to
establish the error estimate by using the technique of the doubling of the variables.
Let (y, s) ∈ D×[0, T ] and let us set k = u(y, s) in (A.5), note that this is legitimate
since umin ≤ u(y, t) ≤ umax, then (A.5) implies that

−
∫ T

0

∫
D

(
|ũh − u(y, s)|∂tψ + sgn(ũh − u(y, s))(f(ũh)− f(u(y, s)))·∇ψ

)
dx dt

+ ‖πh
(
(ũh(·, T ))− u(y, s))π̄hψ(·, τ)

)
‖`1h
∣∣τ=Th
τ=σh

≤ ΛT (ψ).

Now we introduce ε > 0, δ := ε/β, and we set ψ(x, t) = ωε(x− y)ωε(t− s) where ωε
and ωδ are the two mollifiers introduced in (A.1). We now select ψ so that ψ(x, t) :=
φ(x,y, t, s) where the function φ has been defined in (A.2). From now on we replace
ΛT (ψ) by ΛT (φ) to account for the presence of the two new parameters (y, s) ∈
D×[0, T ]. We now integrate with respect to (y, s) over D×[0, T ],

−
∫ T

0

∫
D

∫ T

0

∫
D

(
|ũh − u|∂tφ+ sgn(ũh − u)(f(ũh)− f(u))·∇xφ

)
dx dtdy ds

+

∫ T

0

∫
D

‖πh
(
(ũh(·, T )− u(y, s))π̄hφ(·,y, Th, s)

)
‖`1hdy ds

∣∣τ=Th
τ=σh

≤
∫ T

0

∫
D

ΛT (φ) dy ds.

Moreover, u being the entropy solution to (2.1) implies that

−
∫ T

0

∫
D

(
|k − u(y, s)|∂sθ + sgn(k − u(y, s))(f(k)− f(u(y, s)))·∇yψ

)
dy ds

+ ‖(k − u(·, T ))θ(·, T )‖L1(D) − ‖(k − u(·, 0))θ(·, 0)‖L1(D) ≤ 0,

for any θ ∈ W 1,∞
c (D×[0, T ];R+). Now we choose θ(y, s) := ωε(x − y)ωδ(t − s) =

φ(x,y, t, s) and k := ũh(x, t) where (x, t) ∈ D×[0, T ], and we integrate with respect
to (x, t) over D×[0, T ],

−
∫ T

0

∫
D

∫ T

0

∫
D

(
|ũh − u|∂sφ+ sgn(ũh − u)(f(ũh)− f(u))·∇yφ

)
dx dtdy ds∫ T

0

∫
D

‖(ũh(x, t)− u(·, τ))φ(x, ·, t, τ)‖L1(D)

∣∣τ=T

τ=0
dx dt ≤ 0.
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Upon observing that φt = −φs and ∇xφ = −∇yφ, (this is the decisive observation),
the above arguments imply that

E1(Th)− E1(σh) + E2(T )− E2(0) ≤
∫ T

0

∫
D

ΛT (φ) dy ds,

where E1(σh), E1(Th) and E2(τ), τ ∈ {0, T}, are defined as follows:

E1(σh) :=

∫ T

0

∫
D

‖πh
(
(ũh(·, 0)− u(y, s))π̄hφ(·,y, σh, s)

)
‖`1hdy ds,

E1(Th) :=

∫ T

0

∫
D

‖πh
(
(ũh(·, T )− u(y, s))π̄hφ(·,y, Th, s)

)
‖`1hdy ds,

E2(τ) :=

∫ T

0

∫
D

‖(ũh(x, t)− u(·, τ))φ(x, ·, t, τ)‖L1(D)dx dt.

We are going to estimate E1(σh) and E1(Th) by invoking the decomposition ũh(ai, 0)−
u(y, s) = ũh(ai, 0)− π̄hu(ai, 0) + π̄hu(ai, 0)− u(y, 0) + u(y, 0)− u(y, s). For E1(σh)
we are going to use |ũh(ai, 0) − u(y, s)| ≤ |ũh(ai, 0) − π̄hu(ai, 0)| + |π̄hu(ai, 0) −
u(y, 0)|+ |u(y, 0)− u(y, s)| and for E1(Th) we are going to use |ũh(ai, 0)− u(y, s)| ≥
|ũh(ai, 0)− π̄hu(ai, 0)| − |π̄hu(ai, 0)− u(y, 0)| − |u(y, 0)− u(y, s)|, yielding for both
cases

E11(Th)− E12(Th)− E13(Th) ≤ E1(Th), E1(σh) ≤ E11(σh) + E12(σh) + E13(σh).

We start by estimating E11(σh), E12(σh) and E13(σh). Using the definition of
the `1h-norm and that of the operator π̄h, we deduce that

E11(σh) :=

∫ T

0

∫
D

I∑
i=1

mi|ũh(ai, 0)− π̄hu(ai, 0)| 1

mi

∫
D

φ(z,y, σh, s)ϕi(z) dz dy ds

=

I∑
i=1

|ũh(ai, 0)− π̄hu(ai, 0)|
∫ T

0

∫
D

(∫
D

φ(z,y, σh, s) dy

)
ϕi(z) dz ds

=

I∑
i=1

mi|ũh(ai, 0)− π̄hu(ai, 0)|
∫ T

0

ωδ(s− σh) ds = Γδ,σh(T )‖e(·, 0)‖`1h .

where we have defined e(x, τ) := ũh(x, τ)− π̄hu(x, τ) and Γδ,τ (T ) :=
∫ T

0
ωδ(s− τ) dt

for any τ ≥ 0. Lemma A.1 implies that

E11(σh) ≤ 2Γδ(T )‖e(·, 0)‖`1h .

We now estimate E12(σh) as follows

E12(σh) :=

∫ T

0

∫
D

I∑
i=1

mi|π̄hu(ai, 0)− u(y, 0)| 1

mi

∫
D

φ(z,y, σh, s)ϕi(z) dz dy ds

= Γδ,σh(T )

∫
D

I∑
i=1

∣∣∣∣∫
D

(u(w, 0)− u(y, 0))ϕi(w) dw

∣∣∣∣ 1

mi

∫
D

ωε(z − y)ϕi(z) dz dy

= Γδ,σh(T )

∫
D

I∑
i=1

1

mi

∣∣∣∣∫
D

∫
D

(u(w, 0)− u(y, 0))ϕi(w)ωε(z − y)ϕi(z) dz dw

∣∣∣∣ dy.
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The triangle inequality yields

E12(σh) ≤ 2Γδ(T )

∫
D

I∑
i=1

1

mi

∫
D

∫
D

|u(w, 0)− u(z, 0)|ϕi(w)ωε(z − y)ϕi(z) dz dw dy

+2Γδ(T )

∫
D

I∑
i=1

1

mi

∫
D

∫
D

|u(z, 0)− u(y, 0)|ϕi(w)ωε(z − y)ϕi(z) dz dw dy.

Let us denote by Γδ(T )E1
12(0) and Γδ(T )E2

12(0) the two terms in the right-hand side
of the above inequality. For any fixed τ ≥ 0, a standard approximation result on BV
functions gives

E1
12(τ) ≤

I∑
i=1

1

mi

∫
Si

∫
Si

|u(w, τ)− u(z, τ)|ϕi(w)ϕi(z) dz dw

≤
I∑
i=1

1

mi

∫
Si

∫
Si

|u(w, τ)− u(z, τ)|dz dw ≤
I∑
i=1

1

mi

√
d|Qi|1+ 1

d |u(·, τ)|BV (Qi),

where Qi is the smallest cube that contains Si, see Cohen et al. [8, (2.13)]. Moreover,
the mesh regularity assumption implies that there is a uniform constant c such that
|Qi| ≤ cmi and |Qi|

1
d ≤ c h, thereby implying that

E1
12(τ) ≤ ch

I∑
i=1

|u(·, τ)|BV (Qi) ≤ c
′h|u(·, τ)|BV (Ω).

We finally obtain E1
12(τ) ≤ ch|u0|BV (Ω), since it is known that |u(·, τ)|BV (Ω) ≤

|u0|BV (Ω) for any τ ≥ 0. Let us now estimate E2
12(τ). We have

E2
12(τ) =

∫
D

I∑
i=1

∣∣∣∣∫
D

(u(z, τ)− u(y, τ))ωε(z − y)ϕi(z) dz

∣∣∣∣ dy

≤
∫
D

I∑
i=1

∫
D

|u(z, τ)− u(y, τ)|ωε(z − y)ϕi(z) dz dy

=

∫
D×D
|u(z, τ)− u(y, τ)|ωε(z − y) dz dy =

∫
D×D
|u(z, τ)− u(z −w, τ)|ωε(w) dz dw

=

∫
D

ωε(w) sup
‖y‖`∞≤2ε

∫
D

|u(z, τ)− u(z − y, τ)|dz dw ≤ cε|u(·, τ)|BV (Ω) ≤ c′ε|u0|BV (Ω).

We infer that E12(τ) ≤ Γδ(T )c(ε + h)|u0|BV (Ω) for any τ ≥ 0. Next, we estimate
E13(σh) by invoking the Lipschitz continuity in time of the exact solution u, i.e.,
‖u(·, t)− u(·, s)‖L1(D) ≤ β|u0|BV (Ω)|t− s| (see Holden and Risebro [16, Thm 2.14]):

E13(σh) :=

∫ T

0

∫
D

I∑
i=1

mi|u(y, 0)− u(y, s)| 1

mi

∫
D

φ(z,y, σh, s)ϕi(z) dz dy ds

=

∫ T

0

∫
D

|u(y, 0)− u(y, s)|ωδ(σh − s) dy ds

=

∫ T

0

‖u(·, 0)− u(·, s)‖L1(D)ωδ(σh − s) ds ≤ 2Γδ(T )β(2δ + γ∆t)|u0|BV (Ω).
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Note that here we used the assumption σh ≤ γ∆t and |s− σh| ≤ 2δ. In conclusion,

(A.7) E1(σh) ≤ E11(σh) + cΓδ(T )(h+ β∆t+ ε)|u0|BV (Ω),

where recall that E11(σh) ≤ 2Γδ(T )‖e(·, 0)‖`1h .

We estimate the term E1(Th) in the same way as we did for E1(σh) and we obtain
the following bound:

(A.8) E11(Th)− cΓδ(T )(h+ β∆t+ ε)|u0|BV (Ω) ≤ E1(Th),

where E11(Th) := Γδ,Th(T )‖e(·, T )‖`1h , and 1
2Γδ(T )‖e(·, T )‖`1h ≤ E11(Th) owing to

Lemma A.1 again.
We now estimate E2(τ) for τ ∈ {0, T} by invoking the decomposition ũh(x, t) −

u(y, τ) = ũh(x, t)− π̄hu(x, t) + π̄hu(x, t)− u(y, t) + u(y, t)− u(y, τ) and by applying
the triangle inequality: |E2(τ)− E21(τ)| ≤ E22(τ) + E23(τ). For E2(T ) we are going
to use E2(T ) ≥ E21(T )−E22(T )−E23(T ) and for E2(0) we are going to use E2(0) ≤
E21(T ) + E22(T ) + E23(T ). The definition of E21(τ) implies that

E21(τ) :=

∫ T

0

∫
D

|ũh(x, t)− π̄hu(x, t)|
∫
D

φ(x,y, t, τ) dy dx dt

=

∫ T

0

‖e(·, t)‖L1(D)wδ(τ − t) dt.

We now estimate E22(τ)

E22(τ) :=

∫ T

0

∫
D

∫
D

|π̄hu(x, t)− u(y, t)|φ(x,y, t, τ) dy dx dt

≤
∫ T

0

∫
D

∫
D

(|π̄hu(x, t)− u(x, t)|+ |u(x, t)− u(y, t)|)φ(x,y, t, τ) dy dx dt

≤ cΓδ(T )h sup
0≤t≤T

|u(·, t)|BV (D) + Γδ(T ) sup
0≤t≤T

∫
D×D
|u(x, t)− u(x−w, t)|ωε(w) dx dw

≤ cΓδ(T )(ε+ h)|u0|BV (Ω).

We finish with E23(τ), and we have

E23(τ) :=

∫ T

0

∫
D

∫
D

|u(y, t)− u(y, τ)|φ(x,y, t, τ) dy dx dt

=

∫ T

0

∫
D

I∑
i=1

mi|u(y, t)− u(y, τ)| 1

mi

∫
D

φ(z,y, τ, s)ϕi(z) dz dy ds

=

∫ T

0

∫
D

|u(y, τ)− u(y, s)|ωδ(τ − s) dy ds

=

∫ T

0

‖u(·, τ)− u(·, s)‖L1(D)ωδ(τ − s) ds ≤ 2Γδ(T )βδ|u0|BV (Ω)

In conclusion |E2(τ)− E21(τ)| ≤ cΓδ(T )(h+ ε)|u0|BV (Ω), thereby implying that∫ T

0

‖e(·, t)‖L1(D)wδ(T − t) dt− cΓδ(T )(h+ ε)|u0|BV (Ω) ≤ E2(T ),(A.9)

E2(0) ≤
∫ T

0

‖e(·, t)‖L1(D)wδ(t) dt+ cΓδ(T )(h+ ε)|u0|BV (Ω).(A.10)
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We now combine all the above estimates for E1(σh), E1(Th), E2(0), and E2(T ),
i.e., (A.7), (A.8), (A.9), (A.10), to infer that

1

2
Γδ(T )‖e(·, T )‖`1h +

∫ T

0

‖e(·, t)‖L1(D)ωδ(T − t) dt ≤ 2Γδ(T )‖e(·, 0)‖`1h

+

∫ T

0

‖e(·, t)‖L1(D)ωδ(t) dt+ cΓδ(T )(ε+ β∆t+ h)|u0|BV (Ω) +

∫ T

0

∫
D

ΛT (φ) dy ds.

Since e(·, t) ∈ Xh, 0 ≤ t ≤ T , and the discrete norm ‖ · ‖`1h is equivalent to the L1-

norm, there are uniform constants a, a′ > 0 such that a‖e(·, T )‖L1(D) ≤ 1
2‖e(·, T )‖`1h

and 2‖e(·, 0)‖`1h ≤ a
′‖e(·, 0)‖L1(D), thereby implying that

aΓδ(T )‖e(·, T )‖L1(D) +

∫ T

0

‖e(·, t)‖L1(D)ωδ(T − t) dt ≤
∫ T

0

‖e(·, t)‖L1(D)ωδ(t) dt,

Γδ(T ) (a′‖e(·, 0)‖L1(D) + c(ε+ β∆t+ h)|u0|BV (Ω) + Λ∗),

where recall that we have defined Λ∗ := sup0≤T̃≤T

∫ T̃
0

∫
D

ΛT̃ (φ) dy ds

Γδ(T̃ )
. Using Lemma A.3

with θ(t) = ‖e(t)‖L1(D) and b = a′ ‖e(·, 0)‖L1(D) + c (ε+ β∆t+ h)|u0|BV (Ω) + Λ∗, we
finally conclude that

e(T ) ≤ max(1, a′, c) c(a)(‖e(·, 0)‖L1(D) + (ε+ β∆t+ h)|u0|BV (Ω) + Λ∗).

This completes the proof.
The following lemma, which is a Gronwall-type estimate, is inspired from an

argument invoked in Cockburn and Gremaud [5, Prop 6.2], Cockburn and Gremaud
[6, Lemma 5.4], (see also Holden and Risebro [16, Lemma 3.17]). This result is
essential to complete the proof of Lemma A.2.

Lemma A.3 (Gronwall). Let θ : [0, Tmax] −→ R+ be a non-negative bounded
function and assume that there exist a > 0 and b > 0 such that the following holds for
all T ∈ [0, Tmax]:

(A.11) aΓδ(T )θ(T ) +

∫ T

0

θ(τ)ωδ(T − τ) dτ ≤ bΓδ(T ) +

∫ T

0

θ(τ)ωδ(τ) dτ,

then there is c(a) such that θ(T ) ≤ bc(a) for all T ∈ [0, Tmax] and all δ > 0.
Proof. We consider three cases: T ∈ [0, δ], T ∈ (δ, 2δ] and T > 2δ. Assume first

that T ∈ [0, δ]. The definition of the kernel ωδ implies that ω(t) = ω(T − t) for all
t ∈ [0, T ]. As a result, (A.11) implies that θ(T ) ≤ b

a if T ∈ [0, δ]. Assume now that
T ∈ (δ, 2δ]. Then observing that 1

3 ≤ Γδ(T ) ≤ 1
2 , we have

a

3
θ(T )− b

2
≤
∫ T

0

θ(τ) (ωδ(τ)− ωδ(T − τ))+ dτ

≤
∫ δ

0

θ(τ) (ωδ(τ))+ dτ +

∫ T

δ

θ(τ) (ωδ(τ)− ωδ(T − τ))+ dτ.

Now we use that ωδ(τ) = 1
3δ when 0 ≤ t ≤ δ and ωδ(τ) − ωδ(T − τ) ≤ 0 when

δ ≤ t ≤ 2δ, and using the bound already established above on θ(t) for 0 ≤ t ≤ δ we
obtain that

a

3
θ(T )− b

2
≤ b

3a
.
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In conclusion θ(T ) ≤ 3b
a ( 1

2 + 1
3a ). Finally let assume that T > 2δ; then using (A.11)

we infer that

a

2
θ(T ) ≤ b

2
+

∫ T

0

θ(τ)ωδ(τ) dτ =
b

2
+

∫ 2δ

0

θ(τ)ωδ(τ) dτ ≤ b

2
+

3b

a
(
1

2
+

1

3a
)
1

2
,

giving the estimate θ(T ) ≤ b
a (1 + 3

2a + 1
a2 ) for all T > 2δ. This completes the proof

with c(a) = 1
a max(1 + 3

2a + 1
a2 ,

3
2 + 1

a ).
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Mat. Fiz., 16(6):1489–1502, 1627, 1976.

[19] S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for
fluids. J. Comput. Phys., 31(3):335–362, 1979.


