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Abstract. In some areas of theoretical computer science we feel that randomized algorithms are better and
in some others we can prove that they are more efficient than the deterministic ones.

Approximating the volume of a convex n-dimensional body, given by an oracle is one of the areas where
this difference can be proved. In general, if we use a deterministic algorithm to approximate the volume,
it requires exponentially many oracle questions in terms of n as n → ∞. Dyer, Frieze and Kannan gave
a randomized polynomial approximation algorithm for the volume of a convex body K ⊆ R

n, given by a
membership oracle.

The DKF algorithm was improved in a sequence of papers. The area is full of deep and interesting
problems and results. This paper is an introduction to this field and also a survey.

1. Introduction

We shall consider n-dimensional convex bodies K ⊆ R
n and will try to calculate various

geometric parameters of these bodies. The most important ones are the volume, diameter
and width.

Computing the volume of a “given” 3-dimensional body is not too difficult. We may
assume that the convex body K is enclosed in a box B = Xi≤3[ai, bi]. We can sim-
ply subdivide the intervals up to a given precision ε > 0 and then count how many of
the obtained small cubes have nonempty intersection with K . This number, properly
normalized, will give a sufficiently good approximation of the volume, vol(K).

The above method could be considered efficient in every fixed dimension, if poly-
nomiality is measured in 1/ε but not if we measure it in n and n → ∞: practically the
above method becomes useless.

Here we are looking for geometric algorithms that are polynomial in n, the dimension
of the considered body. So we cannot use the above method of “fine subdivision” for R

n.
Further, even the above simplistic approach rises a sequence of problems, theoretical
difficulties. Among others, we should ask:

Q1. What does it mean that a body K is given? In which form is it given? We shall
consider bodies given primarily by oracles (see §2).

Q2. How can we decide if a box has a nonempty intersection with K?
Q3. When do we regard an algorithm efficient? We are looking for geometric algorithms

polynomial in the dimension. We wish either the exact value of the quantity, or an
approximation of small relative error ε > 0. In this later case we also often require
the algorithm to be polynomial in 1

ε
. 1
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1 Since the input size describes ε using only log(1/ε) bits, this is a “relaxation” deserving some attention.
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Our aim is to give an introduction to a relatively new part of theoretical computer
science, namely, the

Application of Multiphase Monte Carlo Markov Chain methods
to randomized volume computation.

Soon we shall explain in details, what do we call (Direct) Monte Carlo, what is “Monte
Carlo Markov Chain”, why do we need “Multi-Phase” and why do some simpler
approaches break down.

This is a very interesting theoretical field on the borderline of applicability. Yet, the
papers in the field are rather lengthy and technical and make it difficult for the interested
reader to get a good insight.

Remark 1 (Randomization-derandomization). Speaking of randomized algorithms, we
assume that we have a source of random bits or of random real numbers from [0, 1]:
the algorithms we shall speak of cannot be derandomized, as we shall see. Therefore –
theoretically – the usage of pseudorandom numbers cannot replace using really random
resources.2

The field is connected to various deep mathematical principles and the algorithms
are often beautiful. Perhaps the most important areas used in the field are the method of
Markov Chains (Metropolis algorithm) to generate given distributions, the eigenvalue
technique used to analyze the speed of convergence of these Markov Chains to their Sta-
tionary distribution, Rapid Mixing, Harmonic Functions, connection to the Heat Kernel,
isoperimetric inequalities, discrete forms of Cheeger inequality, and many more.

Knowing the “Multiphase Monte Carlo Markov Chain” Methods (and the Prod-
uct Estimators, see Section 4), perhaps it is easy to construct algorithms seeming to
work fine in various circumstances. However, they are often extremely difficult to ana-
lyze rigorously. In many important cases years pass by from the time of invention of
some algorithms to their precise analysis. In other cases we simply do not have rigorous
estimates. This is not so surprising: many of the algorithms have backgrounds in Phys-
ics. Similar is the situation, e.g., in connection with the Simulated Annealing, (see, e.g.,
Grötschel and Lovász, [47].)

One further difficulty and at the same time, beauty of the field is that the experience
and intuition obtained in low dimensions are often misleading (see §2.3). (These differ-
ences are explained from a slightly different point of view in V. Milman’s papers, e.g.,
in [88].)

Here I decided to write an introductory paper that mostly concentrates on the non-
technical steps and on the questions: why do we do this or that in the considered papers.
At the end of the paper I will give a short bibliography.

I will almost entirely restrict myself to geometric algorithms: I will mention only the
Broder-Sinclair-Jerrum permanent algorithm from the randomized combinatorial algo-
rithms, this being a direct predecessor of the randomized geometric algorithms forming
the main subject of this paper.

2 This may seem a contradiction, since the computers do not use truly random sources. Yet, the – very few
– implementations we know of seem to work.



How to compute the volume in high dimension? 339

1.1. The structure of the survey

This paper consists of four parts and an Appendix.
In the first part we shall introduce the basic notions and outline the basic problems

we are dealing with. We shall introduce the Oracle representation, the well guaranteed
convex bodies, the sandwiching ratio of convex bodies and will try to convince the reader
of the importance of the whole topic.

In the second part we shall describe the difficulties, negative results: the “impossi-
bility” to find exact algorithms, or deterministic approximation algorithms for volume
computation, sampling and integration over a high dimensional convex body given by
an oracle.

This survey is centered around the algorithms and other results of Kannan, Lovász
and the author in [60]. So Part III describes the basic algorithm through which I will
approach the whole area. I decided to start with two central theorems and only then
explain the notions occurring in these theorems and their importance. At this point the
reader may but does not have to understand all the notions and motivations. To define
these notions and provide motivation is the task of the next parts.

Theorem 1 (Volume [60]). Given a convex body K ⊆ R
n by a separation oracle, there

is a (randomized) algorithm that, given ε, η > 0, returns a real number ζ for which

(1 − ε)ζ < vol(K) < (1 + ε)ζ

with probability at least 1 − η. The algorithm uses

O

(
n5

ε2

(
ln

1

ε

)3 (
ln

1

η

)
ln5 n

)
= O∗(n5) (1)

oracle calls.

Here the notation O∗(nh) in (1) means that we neglect the logc n factors and the
constants depending on ε and η. Actually, we are always interested primarily in the
exponent of n. 3

The failure probability η does not really influence the speed these algorithms: prov-
ing our results with a fixed η, e.g., with η = 1

4 implies the general case. As Karp and
Luby [61] and Jerrum, Valiant and Vazirani observed [55], if we can achieve ε relative
error with failure probability ≤ 1

4 in some number of steps, then we can repeat the same
procedure independently T times and then take the median of the results. That will be
an ε-approximation with failure probability ≤ e−cT . Therefore switching from failure
probability η = 1

4 to a small η increases the number of steps only by a factor log 1
η

.
All the algorithms we consider are based on sampling: generating random (inde-

pendent) points in some domain, according to a given, (mostly, but not always uniform)
distribution. Moreover, in some sense sampling, volume approximation and integration
of certain functions are equivalent, see e.g., [35]. Therefore it is natural that the above
theorem is strongly connected to the following “sampling” theorem: Denote by B(x, R)

the (n-dimensional) ball of radius R and center x ∈ R
n.

3 Some people use Õ(.) instead of O∗(.). We could also be interested in the dependence on ε that is mostly
a multiplicative factor of the form 1

ε2 logγ 1
ε

.
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Theorem 2 (Sampling, [60]). Given a convex body K ⊆ R
n, (by a separation oracle),

satisfying B(0, 1) ⊆ K ⊆ B(0, d), a positive integer N and an ε > 0, we can generate
a set of N random points {v1, . . . , vN } in K that are

(a) almost uniform in the sense that the distribution of each one is at most ε away from
the uniform in total variation distance, and

(b) almost pairwise independent in the sense that for every 1 ≤ i < j ≤ N and any
two measurable subsets A and B of K ,∣∣prob(vi ∈ A, vj ∈ B) − prob(vi ∈ A)prob(vj ∈ B)

∣∣ ≤ ε.

The algorithm uses only O∗ (n3d2 + Nn2d2
)

calls on the oracle.

Remark 2. By generating a random point x ∈ K we mean a randomized algorithm,
that uses random bits (coin-flipping) and also random, uniformly distributed indepen-
dent vectors from B(0, 1) ⊆ R

n. So we could say that assuming that we can generate
randomness in simple situations we try to generate uniform distribution on complicated
domains and that is highly non-trivial.

Remark 3. At this point we should emphasize that the last formula of Theorem 2 reflects
a very important feature of our algorithms: it takes many more questions, O∗(n3d2), to
generate the first point than the subsequent ones, (which require O∗(n2d2)). The reason
for this is that we shall use random walks to generate these points, and in principle we
may start from a “bad corner” of K . “Unfortunately”, it takes time to get out of that
corner. Afterwards it is much easier to generate a random point. 4

Part IV describes the impossibility of efficient randomized algorithms to find the
diameter and width of a convex body. Speaking of the impossibility of some determin-
istic algorithm we always assume that P �= NP , or at least, P �= #P . The Appendix
contains a short description of some attached research, and also of some technical diffi-
culties.

Repetitions. The structure of the field is rather involved. Therefore I will repeat the
most important notions and connections in some places. I hope this will help and not
bother the reader.

Added in proof. Between sending this paper to the editor and getting it back a “radical
improvement” was obtained by: Lovász and Vempala [84]. They devised and verified
an algorithm that calculates the volume in O∗(n4) oracle steps, instead of O∗(n5). In
some sense this is not so surprising: our algorithm [60] was improved step by step in
several aspects, by Kannan and Lovász [57], Kannan, Lovász and Montenegro, [58] and
lately, by Lovász and Vempala, [81], [82], [83]. So one could wonder, why cannot the
whole algorithm be turned into an O∗(n4) algorithm. Finally, Lovász and Vempala did
it. I have decided not to rewrite the paper very much but change in a few places, very
moderately. I do not feel that the parts described here became (very) obsolate. I feel that
this survey describes the general problems, difficulties and methods. To understand the
beautiful new results one has to understand the previous ones as well.

(See also “Added in Proof II” in Appendix II.) �	
4 A “corner” here is not connected to smoothness, see Definition 3.
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I. Convex bodies and Oracles

2. Oracles

In this survey paper we shall mostly restrict ourselves to convex, compact, “well
guaranteed” bodies in R

n, given by oracles.

In this section we explain three things: oracles, guarantees and the sandwiching ratio.

Definition 1. A body K is well guaranteed if we know that it contains some ball B(0, r)

and is contained in some ball B(0, R).

One reason why we need K ⊆ R
n to be well guaranteed is that we shall ask ques-

tions of the type “is x ∈ K?” and without a guarantee nothing protects us from asking
arbitrarily many questions and receiving only NO answers. That way we will be unable
to assert anything about vol(K). Generally we regard this notion a “technical nuisance”.

The usage of oracles can be found all over the mathematical literature, in mathemat-
ical logic, in computer science, etc. In computer science it is equivalent with speaking
of a subroutine or a black box.

A body K is given by an oracle, if we do not have any direct information about it,
except that it is well guaranteed with r, R, but we may ask questions about K , and we
get answers to our questions.

Depending on the kind of questions and answers, we distinguish several types of ora-
cles. Here we shall use only two types: weak separation oracles and strong membership
oracles, and a third one, connecting them, the strong separation oracle. The expressions
“weak” and “strong” indicate whether the oracle makes rounding errors or not.

Strong Membership Oracle
A convex body K ⊆ R

n is fixed and we can ask questions of the type:
is x ∈ K or not?

To define the weak separation oracle, first we define the strong version of it. We
know that if an x �∈ K , then, by the convexity, we can find a hyperplane S separating x
from K .

Strong Separation Oracle
A convex body K ⊆ R

n is fixed and we can ask questions of the type:
is x ∈ K or not?

The answer is YES, or NO, and, if the answer is NO, we also get a hyperplane S

separating x from K .
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NO / YES

x

Separation Oracle

The separating hyperplane is given by a vector s,
and the separation means that s · x > 1, while s · y ≤
1, whenever y ∈ K .

In practice we always have some rounding errors
in our calculations, and this is reflected in the follow-
ing definition:

Denote by d(x, A) the distance of the point x from
the set A.

Weak Separation Oracle
A convex body K ⊆ R

n is fixed and we can fix an ε > 0 and ask:
is x ∈ K or not?

The answer is YES, or NO, and if the answer is NO, we also get a hyperplane S sepa-
rating x from K , but the precision of the answer is only ε in the following sense:
(a) If d(x, ∂K) < ε, where ∂K is the boundary of K , then we can get any answer,

i.e., the answer is not necessarily correct.
(b) If B(x, ε) ⊆ K , then we always get the correct YES.
(c) If d(x, K) ≥ ε, then we get the correct NO, and a vector s normalized by ||s||1 = 1,
for which s · y < s · x + ε for every y ∈ K.

with error!ε

x

NO / YES

Safe outside

Uncertain cases

Safe inside

Weak separation oracle Well guaranteed K

Often we shall also be interested in the so called “sandwiching ratio”, d := R/r . We
shall see that the sandwiching ratio and some generalizations of it influence the speed
of the algorithms very much.

Since applying a linear transformation to a K ⊆ R
n will be used in many crucial

places, we define the sandwiching ratio more generally:
If E1 ⊆ K ⊆ E2 where E1 and E2 are homothetic ellipsoids around 0 and E1

is obtained from E2 by shrinking by a factor of d , then we shall say that we have a
sandwiching of K with sandwiching ratio d .

Definition 2 (Sandwiching). Given a K ⊆ R
n, we shall often look for a linear trans-

formation A such that AK contains the unit ball B(0, 1) and is contained in B(0, d) and
then we say that we sandwiched K with sandwiching ratio d.

Sandwiching is natural in volume-computation, since the volumes change according
to the determinant of A, but it cannot be used in approximating the diameter.
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Speaking of polynomial approximation algorithms, we should specify the input-size
as well. In our cases the input contains n, ε > 0 and also the two numbers of the guar-
antee, r and R. We wish polynomiality in n and 1/ε, in all the practical cases we can
forget the other parameters. Yet, to be precise, we almost always assume that r = 1 and
the input-size contains log R additional bits to describe R.

Remark 4. It is trivial that if we have weak membership oracles for K and K ′, then we
also have the same for K ∩ K ′, for free. Similarly, if we have separation oracles for K

and K ′, then we have also for K ∩ K ′: among others, we have a separation oracle for
Kr := K ∩ B(0, r) as well.5

Pre-sandwiching. In principle, it can happen that we have a “very pencil-like” K ⊆ R
n:

one for which the inscribed ball is much-much smaller than the circumscribed one.
Therefore we always start with a preliminary sandwiching, which achieves that K be
well guaranteed with r = 1 and R = n3/2. This can be achieved in O∗(n4) steps, see [49].

2.1. Why to use oracles?

The oracles we consider are used in several fairly different settings:

(a) we use them for the “original purpose”, to describe convex bodies, in our geometric
algorithms;

(b) and also we may use them to solve some combinatorial problems;
(c) sometimes using oracles helps to understand deeper theoretical questions.
(d) Finally, the usage of oracles can also be considered as a very useful tool to simplify

the language to describe some equivalence/reduction results of the form “If we can
solve Problem A polynomially, then we can also solve Problem B polynomially”.

Below we make some remarks on (b) and (c).

Remark 5. For a long period it was not clear if Linear Programming can be solved in
polynomial time. In the 1979 Garey-Johnson book [45], on p155, three problems are
listed that would be natural candidates for being strictly in between P and NP: one
of them is Linear Programming. Then Khachiyan [65] applied Shor’s algorithm [95] to
linear programming, proving that linear programming is polynomially solvable. Next
Grötschel, Lovász and Schrijver [48, 49] Padberg and Rao [92] and Karp and Papa-
dimitriou [62] started applying Khachiyan’s method to Polyhedral Combinatorics. They
noticed that

in applying the Khachiyan algorithm to linear programming one does
not have to have all the inequalities describing a convex K in advance:

it is enough if for any given vector x �∈ K one can always generate an inequality, separat-
ing x from K .6 This is a very important feature, because in many situations where, e.g.,

5 If we have optimizing oracles for two convex bodies then we have an optimizing oracle for the intersection
as well, but this is not trivial.

6 The more efficient Karmarkar algorithm does not have this feature.
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we have a graph of order n and an attached polytope, over which we should optimize,
the number of inequalities we should list is exponentially large.

This is the case for example, when we consider a graph Gn on n vertices, its match-
ings, and the polytope spanned by the characteristic vectors of its matchings: Gn is
described roughly by a vector of length

(
n
2

)
but there are exponentially many inequalities

describing its “matching polytope”.
This triggered a whole new area of research. The reader is recommended to read

the books of Grötschel, Lovász and Schrijver [49] or of Lovász [74] describing the
equivalence of several oracle types, their application to Combinatorial Optimization,
the connection to Geometric Number Theory, etc.

The most important combinatorial applications include polynomial algorithms for
vertex packing in perfect graphs, for the matching and matroid intersection problems, for
optimum covering of directed cuts of a digraph, and to minimize value of a submodular
set function.

Remark 6. We have mentioned that sometimes the usage of oracles helps to under-
stand deeper relations. One example of this is the theorem of Baker, Gill and Solovay
[9] according to which, if we replace P and NP by their Oracle versions, PO and
NPO, then one can find oracles O for which PO = NPO and other oracles where
PO �= NPO. This shows that to decide if P = NP one has to use that the classes are
given concretely, not by oracles.

2.2. How to count the steps?

Generally we have several types of steps to count:

• Number of oracle queries (questions asked from the oracle)
• (generating) random bites
• arithmetic steps and “if” decisions;

We shall count only the number of oracle queries, because theoretically there is not much
difference between the two ways to count the steps, and usually the oracle questions are
the “more expensive” ones.

II. Negative results

2.3. Strange phenomena in R
n?

Below I list three facts about high dimensional convex bodies showing that the phe-
nomena are different in high and low dimensional cases. First we introduce a standard
notation: for a fixed real α

αK := {αx : x ∈ K} .

(a) In low dimensions a thin layer around the surface of K is negligible in volume.
On the other hand, since (1 − 1

n
)n → 1

e
, in R

n “almost all points” of K are near the
surface ∂K , as n → ∞, in the following sense:

vol
(
K \

(
1 − ωn

n

)
K
)

≈ vol(K), if ωn → ∞ as n → ∞.
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(b) Let ω = ωn → ∞. Take a hyperplane through the origin and take all those parts
of B(0, 1) which are further away from this hyperplane than ω√

n
. Again, this part of the

ball is negligible: almost all points are near to the hyperplane.
This is expressed in the following important lemma:

Lemma 1 (Spherical cap). Let H be a halfspace in R
n and B := B(x, 1), whose center

x is at a distance t from H . (So we speak of the halfspace not containing the center.)
Then

(i) if t ≤ 1/
√

n, then

vol(H ∩ B) >

(
1

2
− t

√
n

2

)
vol(B);

(ii) if t > 1/
√

n then

1

10t
√

n
(1 − t2)(n+1)/2vol(B) < vol(H ∩ B) <

1

t
√

n
(1 − t2)(n+1)/2vol(B).

Remark 7. Here (1 − t2)
(n+1)

2 ≈ e− 1
2 (n+1)t2

. One could ask, why is most of the volume
of a ball near its equator? For me this means that the section-sizes follow a normal
distribution: I connect this phenomenon mostly to the Central Limit Theorem, and the

1√
n

above to the standard deviation. Another explanation could be found in the “Saddle
Point Method”. See also [89].

(c) Dvoretzky’s theorem [33] asserts that all the high-dimensional convex bodies
have sections (of sufficiently lower dimensions) which are nearly spheres. For related
results we refer the reader to Milman’s paper [88].

Implicitly we shall use one further surprizing fact, showing that the convexity is
important in our cases:

(d) Let, for a unit vector x, D∗(0, x) := B(0, 1)∪B(x, 1) ⊂ R
n. This body can be cut

into two equal parts by an n−1-dimensional disk of radius
√

3
2 : this has an exponentially

small relative surface.7 (For the importance if this, see Section 7.)

2.4. Can we calculate the volume exactly?

The first question is if we can calculate the volume exactly, in polynomial time. As we
agreed, here we shall always assume that P �= #P . Then the answer is negative: No, we
cannot in polynomially many steps! Finding the volume was proved to be #P-hard, by
Dyer and Frieze [34] and Khachiyan [66, 67], even for explicitly given polytopes. A nice
survey of L. Khachiyan [68] covers many important aspects of this field. We explain
here only two facts.

(a) Computing the volume would solve a #P-hard problem:
Take an arbitrary partial order P, say on the elements a1, . . . , an and try to count

exactly its linear extensions. Consider that part of the unit cube which is determined by
the inequalities

0 ≤ xi ≤ 1 (i = 1, . . . , n) and xi ≤ xj whenever ai ≤ aj . (2)

7 i.e., its area divided by the total surface of the sphere is exponentially small.



346 M. Simonovits

The number of linear extensions is n! · vol(Poly(P)), where Poly(P) is a polyhedron
attached by (2) to the partial order. By a result of Brightwell and Winkler [24], counting
the linear extensions of P is #P-hard. So, if P �= #P , then computing the volume is
impossible in polynomially many steps.

The reduction of the volume problem to the linear-extension problem itself is almost
trivial, since each linear extension provides a simplex of volume 1/n! in the unit cube
[0, 1]n, and different extensions correspond to different simplices.

(b) There is another, very interesting approach to this question, (Lawrence [71], see
also Khachiyan [68]). One can construct a simple convex polytope P with inequalities
over the rationals, for which, if we could find a

b
:= vol(P), then b would be so large that

even to write it down would take exponentially many digits.

2.5. Can we approximate the volume? the basic questions

We have seen that the exact computation of volume is impossible. From now on we are
interested only in the approximate calculations.

Speaking of convex bodies we always speak of compact bodies, with positive vol-
ume, though being closed is not really important.

In this survey we are interested in the following problems.

• Given a high-dimensional body K , can we approximate its volume?
• Can we generate uniform distribution on K?
• Can we integrate functions on K?
• Can we approximate the diameter or the width of a body?
• What can be done with deterministic algorithms?
• What can be done with randomized ones?
• How fast are our algorithms?

The answers to these questions are highly non-trivial. In a nutshell, we shall restrict
ourselves to the “input form” where the convex bodies are given by oracles, and all
the three problems: uniform sampling, estimating the volume and integrating over K

are unsolvable by deterministic algorithms in polynomially many steps. (In some sense
these questions are equivalent).

However, if we assume that K is convex, then there exist some randomized algo-
rithms that give sufficiently good approximation of the volume or provide sufficiently
good approximation of the uniform distribution.

When we wish to integrate a function f on a convex K , then again, we cannot inte-
grate all the functions, only a very important but very narrow subclass of them, the so
called log-concave functions. (A function f (x) ≥ 0 is log-concave if log f (x) is con-
cave. Positive concave functions are log-concave.) Very many important (distribution)
functions are log-concave, e.g., the multidimensional normal distribution, or e−x , and
several further density functions in statistics/probability theory.

Remark 8. Integrating a concave function, of course is the same as taking the volume of
a convex body in R

n+1. The problem of integrating concave functions or almost concave
functions was mentioned by Dyer, Frieze and Kannan already in [36]. The integration
of log-concave functions was “solved” by Applegate and Kannan [8]. See also [79].
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2.6. “Brute force methods fail”

“Fine grid method”. The simplest attempt to estimate the volume is to enclose K in
a box and then – subdividing the axes – put a fine grid on K , finally counting the grid
points in K . As we saw, this method works in bounded dimension,8 however, in K ⊆ R

n

it is doomed to fail because of the exponentially many points. One can slightly improve
this method by using the theory of uniformly distributed points, but as the dimension
increases, one has to give up using the improved methods as well. As we shall see, we
have to give up all the deterministic methods.

Löwner-John ellipsoid. We shall need the following:

Theorem 3 (F. John [50]). If K ⊆ R
n is a convex body and E is an ellipsoid containing

K and having minimum volume, then shrinking E around its center by a factor n we get
another ellipsoid, E′ ⊆ K.

We shall call this pair of ellipsoids the Löwner-John ellipsoid. They are uniquely de-
termined. The Löwner-John ellipsoid and its variants are important in several geometric
algorithms. The reader wishing to learn about it more is referred to [49], Section 4.6.

Löwner-John

ellipsoid

One way to approximate the volume of a convex body K

is to find its approximate Löwner-John ellipsoid. Assume
for a second that we could find the Löwner-John ellipsoid
of a convex body by a polynomial algorithm. Then, of
course, we could estimate the volume of K from below
by the volume of the inscribed ellipsoid and from above by
the circumscribed ellipsoid. The ratio of the two estimates
is ≤ nn. There are two problems with this approach:

(a) we cannot find the Löwner-John ellipsoids for a convex body, not even approxi-
mately, in polynomial time. 9

The solution is that we can find in polynomial time two ellipsoids where the ratio of
shrinking is (n + 1)

√
n.

(b) The result is very weak: we would like to have, e.g., in dimension 10, a relative
error, say 1/10, or, 1/1000, and here we get 1010. Who cares for such a weak result? In
the next two sections we shall see that deterministically this is the best one can get.

2.7. Elekes’ theorem

The results of Elekes [39] and the improvements of Bárány-Füredi [11], Carl [27] and
Carl-Pajor [28] show that restricting ourselves to deterministic algorithms, we cannot
really hope for reasonably good results.

Theorem 4 (Elekes [39]). Every deterministic algorithm (to estimate the volume of an
arbitrary K ⊆ R

n and using q oracle question, makes a relative error ≥ √
2n/q for

some convex n-dimensional bodies given by well guaranteed separation oracles.

8 It gives a polynomial (in 1/ε) algorithm but the degree grows with n.
9 We shall return to this question and revise what we just have said, in Section 5.4.
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Proof. Assume that an algorithm A to approximate the volume is given and we wish to
prove that – having asked q questions – it cannot approximate the volume of all convex
bodies better than with

√
2n/q relative error. The fact that the algorithm is deterministic

means that for a given K and ε > 0, if we run it twice, it asks the same points x1, . . . , xq

and gives the same result. (This is not so with the randomized algorithms.) Further, if
we have two convex bodies, K1 and K2 and run the algorithms, and the algorithm asks
the sequence (xi ) for K1 and (yi ) for K2, then the first place where the two sequences
may differ, xi �= yi follows a point xi−1 = yi−1 belonging to the symmetric difference
K1�K2.

The “ 1
2 ”-balls cover

the convex hull

We fix ε := 2n (!!!) and apply the algorithm with this ε. If for K1 the algorithm
provides in q steps the sequence x1, . . . , xq , and K2 is the convex hull of these points,
then for K2 the algorithm A would ask the same points, x1, . . . , xq (and provide the

same estimate ζ ). If the volume of K1 and K2 are very far
from each other, then the algorithm must be bad at least for
one of them.

Apply this to K1 := B(0, 1) and the convex hull K2 of
the corresponding q points x1, . . . , xq . Elekes observed that
if Bi are the “Thales” balls of (0, xi ): Bi := B( 1

2 xi ,
1
2 ), then

K2 ⊆
⋃
i≤q

xi∈B

Bi .
10

Clearly, vol(Bi) = 2−nvol(B(0, 1)), implying that

vol(K2)

vol(B(0, 1))
≤ q

2n
.

Since A is deterministic, for K2 (defined by the algorithm!) the algorithm asks the
same x1, . . . , xq , and gives the same estimate ζ : the algorithm cannot distinguish if we
had the unit ball B(0, 1) or the convex hull K2 of x1, . . . , xq . So the algorithm will have
a relative error at least

√
2n/q either for the ball or for the convex hull. �	

We conclude that the fact that the volume of B(0, 1) cannot be approximated by the
volume of convex polyhedra of polynomially many vertices implies that the algorithm
has to have large relative error, either for K1 or K2.

Remark 9. This is again a case where we see something counterintuitive, or at least
something completely different in low and high dimensions. Again, as in the first exam-
ple of Section 2.3, the fact that qn is very small for large n is in the background.

2.8. The Bárány-Füredi results

The Bárány-Füredi theorem does roughly the same as the Elekes theorem, in a more
complicated but much more precise way.

10 This is equivalent with that from a point x ∈ K2 at least one of the angles 0xxi is obtuse or a right angle.
We can see this in the plane and a short calculation proves it for the general case.
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Theorem 5 (Bárány-Füredi [11, 12]). There is no polynomial time (deterministic)
algorithm that would compute a lower bound vol(K) and an upper bound vol(K) for
the volume of every convex K ⊆ R

n, given by some oracle, so that

vol(K)

vol(K)
≤
(

c
n

log n

)n

.

Bárány and Füredi proved three further theorems in their paper, one of which is
related to the non-approximability of the diameter and will be formulated in Part IV.

Carl has obtained implicitly the same result [27]. For related results see also Carl
and Pajor, [28], Bourgain-Milman, [20].

One corollary of these results is that the randomized volume approximation algo-
rithms cannot be derandomized to get a polynomial time deterministic algorithm. In fact,
as Dyer and Frieze [35] pointed out, in a polynomial randomized algorithm we need at
least cn random bits.

2.9. Why cannot we use Monte Carlo methods directly?

The volume of the

inscribed ball is

exponentially small

The easiest way to estimate the volume of a convex body
could be to use a Monte Carlo algorithm: find a rectangular
box Q containing K , generate uniformly distributed points
x1 . . . , xN ∈ Q and count how often xi ∈ K .

If we get S such points, then ζ = S/N would be a good
approximation of vol(K)/vol(Q). The problem with this
approach is that many phenomena familiar in low dimen-
sion completely change as the dimension increases. Indeed,
even in the

simplest case, when K = B(0, 1
2 ) is the ball inscribed in the n-dimensional unit cube,

the proportion vol(K)/vol(Q) ≤ qn for some q < 1.11

Therefore we need N > q−n points to hit B(0, 1
2 ) at least once. So this algorithm

does not work: neither theoretically, nor in practice.
To argue in the more classical way we would say: If we wish to approximate an event

of probability p, its standard deviation is around
√

pN , so we should not use Monte
Carlo for events of small probability. . . .

III. The volume algorithms

3. Origins: The permanent problem

The methods used to approximate the volume come from the permanent problem. The
permanent is that variant of the determinant where all the signs are switched to +1.
The permanent equals to the number of 1-factors of a corresponding bipartite graph. So,

11 We know that vol(B(0, 1)) = πn/2/
(1 + n/2).
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finding the permanent is counting the 1-factors of a bipartite graph. Valiant [100] proved
that the problem of finding the permanent deterministically is as difficult as it can be: if
one can find the permanent of the 0-1 matrices in polynomially many steps, then one can
solve all the problems in a fairly wide class of counting problems. In a more technical
term, the permanent problem is #P-hard. It is commonly believed (and we assumed)
that these problems are unsolvable polynomially.

It was A. Broder [25] who suggested to use random walks to estimate the number
of 1-factors in dense bipartite graphs. The algorithm of Broder used a random walk on
the 1-factors and “almost”-1-factors of a graph. Unfortunately, there was an error in
the argument of Broder, pointed out by Milena Mihail, [86]. Therefore the first correct
proof of that the Broder algorithm approximates the permanent with high probability, in
polynomially many steps, was given by M. Jerrum and A. Sinclair [53]. The algorithms
of this survey all follow the basic approach of Jerrum and Sinclair, despite that there are
many important differences in the details.

As to the permanent problem, for many years the condition that the matrix should be
dense could not be removed. Kannan in 1995 [56] listed this problem as one of the impor-
tant open questions. Recently Jerrum, Sinclair and Vigoda succeeded in eliminating this
density condition [54].

3.1. How to describe the Multiphase Monte Carlo Markov Chain method
in a nutshell?

The field we try to describe can be characterized as follows:

– We have a (geometric) problem that we cannot solve by deterministic methods. We
would like to use Monte Carlo, to estimate an exponentially “small” number � with
small relative error. So we cannot apply Monte Carlo methods directly.12

– One way to get around the inapplicability of Monte Carlo methods is to write the � as
a product of polynomially many factors: � = ∏

�i , where the factors �i ∈ ( 1
3 , 1)

and can already be approximated by Monte Carlo methods. In these cases we call �

a product estimator and the whole procedure we shall call Multiphase Monte Carlo
method.

– In our cases
∏

�i will be a “telescopic” product: we shall define m := cn log n

domains K1 ⊆ . . . ⊆ Km and estimate �i := vol(Ki)/vol(Ki−1). In our cases
(mostly) Ki is the intersection of K with a large ball, say, Ki := K ∩ B(0, 2i/n).

– To use the Monte Carlo method, to get the numbers �i , we have to generate random
(mostly almost uniformly distributed) independent points in the domains Ki . To be
precise, we shall generate the distributions in cn log n domains, recursively. We use
a random walk for this: we devise a Markov Chain whose stationary (i.e. limit) dis-
tribution is uniform (or almost uniform) on Ki , run (simulate) this Markov Chain for
polynomially many steps, and then take its “state” as a uniformly distributed point
in Ki .

12 Speaking of (simple or direct) Monte Carlo methods I mean the simplest version, where a measurable
K is embedded into a larger set D, the volume of which is known and we also assume that we can generate
uniform distribution in D. Then we generate N points uniformly and independently in D and count, how many
of them belong to K . If S of them belong to D then we use vol(K) ≈ S

N
vol(D).
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As to these Markov Chains, in this survey we restrict ourselves to three of them:
Random Walk on a Grid, Ball-Step, and Hit-and Run. For us the Random Walk with
Ball-steps is the most important one.

The Markov Chains are connected to the convex bodies Ki by the fact that in the ith

phase when we walk in Ki , whenever we would leave Ki , we skip that move: decide to
stay in Ki ; at the same time, of course, we count, how often are we in Ki−1 ⊆ Ki . (As
we shall see, the Hit-and-Run does not even try to leave K , by its definition.) In this
sense the Random Walk “explores” the unknown convex body.

3.2. Missing lower bounds, on the number of queries

Generally it is nice to have matching lower and upper bounds or at least ones that are not
too far away from each other. Here the reasonable lower bounds are missing. It would
be nice to prove that one needs at least n

√
n oracle questions to estimate the volume of a

convex K ⊆ R
n given by an oracle, with precision ε and failure probability η = 0.1. 13

4. Multiphase Monte Carlo

Multiphase Monte Carlo

We have mentioned on p343 that using O∗(n4) steps we may achieve a sandwiching
ratio d = (n + 1)

√
n. Let us consider a K ⊆ R

n containing B(0, 1) and contained in
B(0, (n + 1)

√
n). Above, the main obstacle to use Monte Carlo methods was that the

ratio to be approximated was exponentially small. One way
to get around this problem is to produce this number as the
product of some (not too many) numbers each of which is
already reasonably large, say is in ( 1

2 , 1). To this end, con-
sider the following sequence of bodies, intersections of K

with some balls: Let for i = 0. . . . m := �4n log n�,

Ki := K ∩ B(0, 2i/n).

One can easily see that

1 ≤ vol(Ki)

vol(Ki−1)
≤ 2.

Clearly, K0 = B(0, 1) and Km = K . Therefore, if we could generate uniformly dis-
tributed points in each convex body Ki in polynomial time, then we could approximate
vol(K), using

vol(K) = vol(K0) ·
m∏

i=1

vol(Ki)

vol(Ki−1)
. (3)

where vol(K0) = vol(B(0, 1)) = πn/2/
(1 + n/2).

13 We do not even know that one needs say, at least n(log n)10 oracle question.
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Here comes a serious difficulty: we can easily generate uniform distributions on
n-dimensional cubes, simplices, ellipsoids, but we cannot easily generate on Ki . We
shall generate uniformly distributed points recursively, using random walks: assuming
that we have already generated a vi (almost) uniformly distributed on Ki−1, we start a
random walk on Ki , simulate it for polynomially many steps and then stop. If we do this
the right way, we get a uniformly distributed vi ∈ Ki .

Here we have some luck: reaching the last convex body, Km, we do not have to
go back to K0, to generate the next random point in K: having an (almost) uniformly
distributed y� ∈ K we may start from this y� to get the next point, y�+1 ∈ K , (almost)
uniformly distributed and (almost) independent from y�.

4.1. The breakthrough

As we have already indicated, in the volume computation the breakthrough came in the
papers of Dyer, Frieze, and Kannan [36, 37].

They showed that the volume of a convex body K ⊆ R
n, given by a separation ora-

cle, can be estimated with arbitrary precision, in polynomially many steps. Their paper
was a real breakthrough in the field, despite the fact that it had to solve O∗(n23) convex
programming problems and therefore was very far from anything practical. (Remember
that the O∗-notation is a soft version of the O-notation, that suppresses powers of log n

(and some functions of ε and η, see p339.))
The DFK algorithm was improved in a sequence of papers. Below we list some of

the important steps:14

• First Lovász and Simonovits [78] improved it to O∗(n16), by proving an appropriate
isoperimetric inequality and simplifying, improving the original algorithm in sev-
eral places. The introduction of the µ-conductance was an important improvement,
finding a good isoperimetric inequality and the better analysis were other ones. (See
Theorem 9.)

• Applegate and Kannan [8] introduced several new ingredients, among others, the
Metropolis algorithm and the Integration of log-concave functions. They obtained
an O∗(n10) algorithm. (See Section 4.7.)

• Next Lovász introduced the ball-steps [76], obtaining an O∗(n10) algorithm. This
was the first switching to continuous random walks.15

• Dyer and Frieze [35] obtained an O∗(n8) algorithm (still using a random walk on
the grid).

• In [80] we obtained an O∗(n7) algorithm, using ball-steps and Metropolis algorithm.
(See Section 4.7.)

• The next step depended primarily on improving the sandwiching: Kannan, Lovász,
and I constructed an algorithm with O∗(n5) oracle queries. We used the isotropic
position for sandwiching. (See Section 5.2.)

• Bubley, Dyer, and Jerrum [26] gave an analysis of the Ball-Walk algorithm using a
“coupling argument”.

14 A more detailed description of the story is given in [56].
15 Another continuous random walk was the Hit-and-Run but that was analyzed only much later.
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• Lovász [77] proved that after certain preprocessing the Hit-and-Run method mixes
fast. (See Theorem 13.)

• Recently Kannan, Lovász, and Montenegro [58] gave a better analysis of the ball-
walk.

• Lovász and Vempala extended the hit-and-run results to sampling according a log-
concave distribution [82].

We return to this “story” in a slightly different form of a table, in §6.

4.2. The two phases: sandwiching and Multiphase Monte Carlo

We defined sandwiching in Definition 2. Generally we speak of rounding or sandwiching
a convex body but for us this means the same.

In all the algorithms of which we are speaking here, first we use a sandwiching for
K , and then we apply a multiphase Monte Carlo algorithm to the sandwiched body.

K, given by a separation Oracle

Bringing into 
isotropic position

Estimating the volume
in isotropic position

truncations
ratios of "subsequent"

Approximate the volume

The lazy walk

Analyzing the 
speedy walk

Sampling for
isotropy

Simplified outline of the O∗(n5) algorithm
(The structure of the algorithm is not a tree!)

The sandwiching is very important because our algorithms would not work for
“pencil-like” bodies, i.e., bodies which are too long in one direction compared to their
other dimensions. Later we shall return to this question.

Random walks. The theory of random walks is very rapidly growing and increasing in
its importance. Random walks are attached to random coin-tosses, to Brownian motions,
to many algorithms in computer science, to optimization, . . . 16

All the random walks we consider here are “time-reversible” which is kind of a
symmetry condition, but we shall not define this here. Also, in case of the grid-walk
we are walking in a finite state-space, therefore it is easy to attach a matrix A (of the
transition probabilities) to our random walks and use the matrix-theoretical properties

16 One of the first applications in the related field was to generate a sequence of rules which helps one to
walk around in an unknown “maze” [5].
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of A. This can be done because the t-step transition probabilities are represented by At ,
and this is also the reason why the spectral properties of A are very useful for us. For
the continuous situation we have to invest a little extra work.

Basically we could distinguish between random walks in discrete spaces and random
walks in arbitrary metric spaces. Strangely enough, in the field we are trying to describe,
namely in geometric algorithms, first the discrete versions were applied (random walks
on the grid) but now the emphasis is shifted to random walks in continuous spaces. Par-
allel to this, many interesting and important results were obtained in other applications
of random walks, e.g., on card shuffling, generating a random element of a group, etc.
and also a whole new body of research developed related to random walks on arbitrarily
given finite graphs. And there is also another theory for infinite graphs.

Here we shall restrict ourselves to the minimum one should know about these random
walks, but the reader is referred to the books [43] . . . works of Diaconis [31], Aldous
and Fill [3], papers of Lovász and Winkler [85] just to mention a few ones.

The theory of ergodic billiards is also related to this theory.
We are interested only in the geometric cases, when a convex body is given in R

n

and we produce a random walk inside this body.

4.3. Random walks in a convex body

4.3.1. How to use random walks to generate random points? As we have already
mentioned, in each of the considered algorithms one “invents” a random walk whose
stationary distribution is either uniform on K or has some other nice properties.

End11

7
0

4
3

21Failure

Failure
Start

The random walk
produces the stationary
distribution

Then one simulates this random walk for polyno-
mially many steps and outputs its endstate. The crucial
question is if we can prove that in not too many steps
we get a point whose distribution is nearly stationary.
Our random walks have exponentially many states (or
“even worse”, sometimes they are continuous walks).
We call such a random walk rapidly mixing if it gets
near to its stationary distribution in polynomially many
steps.17

4.3.2. Lazy random walk Whichever random walk we use for generating random
points, we mostly assume that at each step we flip a coin, and (with probability 1

2 ),
i.e., for “tail” we stay where we were (“laziness”) and for “head” we plan a random
step: choose a random direction v and if a + v ∈ K , then we move to a + v, (“success”)
otherwise we (still) stay put (“failure”).18 If we have this original random “laziness”,
we call the random walk “lazy”.

17 Observe that this definition in this form is slightly loose.
18 More precisely, sometimes we deviate from this basic scheme: e.g., for the Hit-and Run walk we do not

have to check if we drop out of K and in [80] we walk/integrate on the whole space, see Section 4.7.
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Because of the original coin-flipping we move on average half slower than we could.
So one would think that this “laziness” is completely unnecessary. But this is not so. If
we walk around on a grid, then parity problems can prevent us from getting uniformly
distributed points on the grid-points in K: however, this is not the real point. In the
finite case, e.g., a random walk is described by a matrix. We use the laziness because it
turns our matrices describing the random walk into positive semidefinite matrices. The
analysis of our algorithm becomes much easier.19

Remark 10. We use in our algorithms two kinds of sources for randomness: a “coin”-
flipping, i.e., a sequence of independent random bits, and a sequence of independent
random vectors, defining our steps and depending on the actual types of the walk.

Real exact arithmetics. When counting the arithmetic steps, we have an additional
“problem”: the precision of “our arithmetics”. Namely, we may choose two different
models: in the first one we use Real, exact arithmetics, while in the second one we take
into count the rounding errors as well. This second model may seem to be more realistic,
however, in our cases the difference between the two models is negligible.

By continuity, if we use high enough precision and simulate a random walk using the
two different arithmetics, the orbits would be roughly the same, with one exception: the
rounding error would lead only to one serious change: when we are simulating a random
walk in some (truncated) convex body Ki , at each step we have to decide if we are in the
convex body or not. If with real arithmetics we decide that we are inside but the rounding
error would result in getting out from Ki , then this would really change the realization of
the considered random orbit.Yet, it is not too difficult to choose a high enough precision
where the probability of such errors is negligible. For details see, e.g., [80].

A convex body K ⊆ R
n is given and we consider three types of random walks on it.

4.4. Walking on the truncated grid
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Walking on the
truncated grid

We define a sufficiently fine grid (of δ-steps) and
denote by Lδ this grid. At each step we are at a point
xj (=vector) of the grid, and flip a coin and stay at
xj if the result of the flipping is “tail”. Otherwise we
choose a random direction v out of the 2n grid direc-
tions (uniformly, independently) and try to move to
the neighbor xj + v. If xj + v �∈ K , we stay put. If
xj + v ∈ K then we move to xj+1 := xj + v.

In the original paper of Dyer, Frieze and Kannan [36] they use a grid with step-
size δ = n−5/2. In [78] we changed several points and therefore could use larger steps,
δ = n−3/2. This was one of the sources why our algorithm was faster.

19 The situation is somewhat analogous to the one in Fejér’s theorem: in case of the lazy walk we take some
weighted averages of the probabilities of the ordinary walk. The averages of the Fourier sums of a function f

often converge even if the Fourier expansion does not.
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4.5. Ball-steps

We choose a step-size, say δ > 0 which is in the KLS Algorithm around 1/
√

n. Then we
use a “lazy” random walk, but when we try to move, we choose a random v ∈ B(0, δ).
Being in xj we try to move into xj+1 := xj +v. However, if xj +v �∈ K then we declare
“failure” and do not move.

Random walk
with ball-steps

One problem is – with all our walks – that they may
get stuck near corners of K . (Think of a point very close
to a vertex of an n-dimensional cube: the probability of
escape in a single step is close to 2−n.) This “getting stuck
in a corner” has two versions: in the beginning, when we
do not know where to start from, and in the middle of the
algorithm.

Heuristically we feel that the problem is not so serious during the algorithm because
the probability of getting into such a corner is also very small. Yet, somehow we have
to handle this problem. To measure the seriousness of this “catch” we introduce the

Definition 3 (Local conductance). The local conductance �(x) is the probability
of staying inside K:

�(x) = �δ(x) := vol(K ∩ B(x, δ))

vol(B(x, δ))
. (4)

On the figure we see three positions of x, where in one case the δ-ball is completely
in K , �(x) = 1, in the other a small part of the ball is outside, say, � := 0.820 and in the
third case x is near the corner and staying inside has exponentially small chance.
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Dangerous corners

Some results show that if the local conductance is large
enough then the convergence is fast. One question often
occuring is: if we know only that the average local con-
ductance is large, can we still assure rapid mixing? The
answer is YES and this is important in [60].

We have three important input parameters, n, ε and η, and two “technical ones”: R, r

of the oracle guarantee. After the sandwiching these are replaced by d (the sandwiching
ratio) and 1.

We also have to choose a step-size δ > 0 in our algorithms using the grid-walk or
the ball-walk, (but not in the Hit-and-Run [77]). The choice of δ is very important, see
the next section.

In our KLS algorithm [60] we used the isotropic position for sandwiching (see §5.2)
so we also needed two further parameters connected to the sandwiching: ϑ , characteriz-
ing the quality of the approximate isotropic position, and the average local conductance

20 There the figure may be misleading in high dimension.
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λ := 1

vol(K)

∫
K

�(x) dx, (5)

defined using (4).

How to choose the stepsize? In many of these random walks we may choose the step-
size δ and if δ is small, then our rambling around will not be fast enough and we lose on
that. On the other hand, if we choose a too large δ, then we shall “jump out of K” too
often, wasting many steps. So we should choose δ so that the probability of “jumping
out” be on average a constant, say, ≈ 1/2.

Problem. We could change the stepsize during the random walk by decreasing δ if we
jump out too often and increasing it if we jump out too rarely. Can this help in our
algorithms? Namely,

(a) Can we choose such rules to get good implementations?
(b) Can we analyze the obtained “generalized” random walks?

The difficulty with this is that using such rules we do not always get Markov Chains.
An additional problem can be that the stationary distribution does not always exist for
this general setting, or it may exist but it may differ from the desired distribution.

4.6. Hit-and-Run

x x’

x"

Hit and Run

Given a K ⊆ R
n, we define the Hit-and-Run step

for an x ∈ K as follows: we generate a random uniform
vector v ∈ S(0, 1), (where S(x, r) denotes the sphere
of radius r around x) and then determine (using a halv-
ing method) the intersection segment of the line x+ tv
and K . Next we take a random uniformly distributed x′
on this segment and move there. This is called the “Hit-
and-Run” random walk, introduced by Smith [96].

Some people felt that this random walk mixes
very fast. This was verified (in some sense) by Lovász
[77], see in the Appendix.

Remark 11 (Warm start). Hit-and run is analyzed in several papers, from practical and
theoretical points of view (Practical: [96], [15], theoretical: [77], [82], etc.). Right now
the theoretical approach does not extend to the sandwiching part: uses so called warm
start. Warm start means that in analyzing an algorithm we immediately jump to the
second part of the algorithms: to the volume estimate of a sufficiently round (i.e., well
sandwiched) convex body. So we assume that K is sufficiently round. We use one more
extra assumption: that we have a sufficiently good initial distribution on the convex body.

4.7. Metropolis algorithms?

As we pointed out in the introduction, the field contains – beside many technical diffi-
culties and tedious calculations – many elegant ideas.
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If we can generate uniform distribution on K then we can generate many other dis-
tributions as well, in many different ways. One standard approach is the following one:
Metropolis Algorithm. Assume that we have a function f (x) on K and a random
walk, say any of the above ones: grid-walk, ball-walk, hit-and-run. We can modify
easily our random walk using the same laziness as above, but even when we wish to
move (because of getting “head”) we

• check if f (x) ≥ f (x + v), and if YES, we move to x + v,
• if NO, then we produce a random event C (=generalized coin flipping) of proba-

bility f (x+v)
f (x)

. If we have a success with C, we move to x + v, otherwise we stay in
x.

If
∫

f < ∞ then this will produce a distribution proportional to f (x). For the details
see [8, 80].

Applegate and Kannan [8] were the first to use Metropolis algorithm [87] in this field.
This means that instead of generating uniform distribution we generate some other one.
In our paper with Lovász [80], yielding an O∗(n7) algorithm we also used Metropolis
algorithm and the following

Lemma 2. Let K be a convex body containing the origin in the interior and x ∈ R
n.

Denote by φ(x) = φK(x) the least non-negative number t for which x ∈ tK . Then

vol(K) = 1

n!

∫
Rn

e−φ(x)dx.

The formula easily follows from that
∫∞

0 tn−1e−t dt = (n − 1)!. Its application –
in some sense – replaces the sandwiching: the parts of the integral corresponding to the
distant parts of the space decay exponentially.

One advantage of this formula is that it is an integral over the whole space: the
problems connected with the boundary of K disappear. To use this formula we need
to generate points according to a distribution proportional to f (x) := e−φ(x), which is
easy, using the Metropolis algorithm.

4.8. Local conductance and speedy walk

Another place where we used random ball walks to generate non-uniform distributions
was our paper [60]. We used a random walk that – as a lazy random walk – converged
to uniform distribution on K , but when – for technical reasons – we “observed” it only
when it really moved, then we got a non-uniform distribution. If we do not count the steps
when we jump out, then the probability of those points where we jump out with high
probability will be very small. Indeed, we can see that we get a distribution proportional
to the local conductance �(x), defined in (4). This walk is called the “speedy walk”. Its
analysis is simpler, since it does not get stuck in corners, but we have to compensate
this by some extra work at the end: we are interested in the number of steps of the Lazy
Random walk and are not allowed to forget the wasted steps. So we have to show that
on the average we do not lose to many steps. The details are omitted.
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5. Sandwiching a convex body

5.1. Sandwiching and its importance

Sandwiching was defined in Definition 2. The sandwiching means that we try to find
a linear transformation A such that for AK the ratio of the radii of circumscribed and
inscribed balls is small: nc. We use both sandwiching and approximate sandwiching, as
explained below.
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Why do we use sandwiching?

The sandwiching ratio strongly influences the speed of our algorithms. The thumb-
rule is that if we gain a factor λ in sandwiching, we gain λ2 in the speed: for K with a
sandwiching ratio d , all the considered algorithms will have upper estimates for the num-
ber of oracle queries, proportional to d2. Therefore having a sandwiching ratio d ∼ n

√
n,

in the Dyer-Frieze-Kannan algorithm instead of the Löwner-John ratio n means losing a
factor of n. In [80] we used randomized approximate sandwiching. By randomization we
pushed down the sandwiching ratio to n, thus gaining a

√
n. This gains in “speed” a factor

of n. We could also throw away an ε portion of vol(K), bringing down the sandwiching
ratio of the truncated body to

√
n. This resulted in another improvement of a factor of n.

This yields in [80] an O∗(n7) algorithm, but for centrally symmetric K we can gain
in the “approximate sandwiching” factor a further

√
n, thus reducing the number of que-

ries to O∗(n6), If we consider a polyhedron defined by polynomially many inequalities,
then we can gain a further

√
n on sandwiching, thus bringing down the number of oracle

queries to O∗(n5).
The ratio of approximate sandwiching may be n, or even better,

√
n. Perhaps it is

possible to achieve a sandwiching ratio that is a log-power.

Approximate sandwiching.
Sandwiching is difficult. In the early papers we used so
many steps to approximate the volume of a sandwiched
convex body that the sandwiching seemed cheap. As
the algorithms improved the sandwiching became more
involved, slightly more expensive and the approximation
of the sandwiched body cheaper and cheaper. So in [60]

we used O∗(n5) oracle queries for both sandwiching and approximating in the second
phase.

From that on, if one wishes to get a faster algorithm, one has to improve the sand-
wiching as well.
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To be precise, we used exact sandwiching and approximate sandwiching as well.
Approximate sandwiching means that the ellipsoid E2 by and large should be inside K

while the ellipsoid E1 should by and large contain K . 21

To speed up the sandwiching means that one has to find a sandwiching which gives
at least

√
n approximate sandwiching ratio, but does it in, say, O∗(n4) steps.

We conclude this part with a problem connected to sandwiching:

Problem. (Lovász)22 Given a convex K ⊆ R
n and an ε > 0, can one always find two

concentric homothetic ellipsoids, E1, E2 so that their ratio is ≤ (log n)c and vol(K \
E2) < εvol(K) and vol(E1 \ K) < εvol(K)?

The conjecture is YES. The conjecture can easily be checked for a simplex or a
cube. Observe that this problem is purely geometric, not algorithmic.

5.2. The isotropic position

The shape of a general convex body may be very complicated and there are several
ellipsoids attached to a K ⊆ R

n to describe its shape more or less accurately. We have
already seen the Löwner-John ellipsoids. Earlier by sandwiching we meant – among
others – to change the shape of K by a linear transformation so that its Löwner ellipsoid
became a ball. Now we describe another similar but perhaps more efficient method.

Two further ellipsoids attached to K are the Legendre and the Binet ellipsoids. As-
sume that the center of gravity is 0. Given a unit vector s, that defines a hyperplane Hs
through the origin, and we may calculate the quadratic inertia of K to this Hs:

I (s) :=
∫

K

(x · s)2 dx,

where x · s is the ordinary scalar product. There exists a unique ellipsoid EK with the
property that their inertia is the same in every direction:∫

K

(x · s)2 dx =
∫

EK

(x · s)2 dx, for every s ∈ R
n.

This EK is called the Legendre ellipsoid of K . If this ellipsoid is a unit ball, then,
(after a proper normalization) we say that K is in isotropic position. The Binet ellipsoid
is dual to the Legendre ellipsoid.23 For a more detailed description see, e.g., [90, 89].
If EK is not a ball, then applying a linear transformation A to K we may achieve that
the ellipsoid becomes a unit ball. This convex body KI := AK is called the isotropic
position of K .

More formally,

Definition 4 (Isotropic position). K ⊆ R
n is in isotropic position, if the center of

gravity of K is the origin:

b(K) :=
∫

K

x dx = 0.

21 In [80] we “paid” O∗(n7) for both approximate sandwiching and approximating the volume of the sand-
wiched body!

22 I have heard this conjecture in this form from Lovász but it goes back to some works of V. Milman.
23 at least, for centrally symmetric bodies.
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and, using the notation x = (x1, . . . , xn), for every 1 ≤ i ≤ j ≤ n,

1

vol(K)

∫
K

xixj =
{

1, if i = j ,
0, if i �= j .

24

The above definition implies that

1

vol(K)

∫
K

‖x‖2 dx = n,

and therefore the largest part, all but an ε portion of K belongs to B(0,
√

n
ε
).

Remark 12. Here we underemphasized two topics: the log-concavity and the Brunn-
Minkowski type theorems. A theorem of Borell [18] asserts that the measure of the
spherical sections of a convex body is a log-concave function. This implies that vol(K \
B(0, T )) < e−cT , providing better results.

5.3. Almost isotropic position

Because of computational errors (and weak separation) we cannot hope for an exact
isotropic position: we have to introduce its approximate versions.

Definition 5. K is in ϑ-almost-isotropic position if (for some ϑ ∈ (0, 1)),

‖b(K)‖ ≤ ϑ,

and, for every v ∈ R
n, we have

(1 − ϑ)‖v‖2 ≤ 1

vol(K)

∫
K−b(K)

(vTx)2 dx ≤ (1 + ϑ)‖v‖2.25 (6)

In our algorithms we use a quantitative version of the following

Lemma 3. Given a convex K ⊆ R
n (by a weak separation oracle), for every ϑ, η > 0,

there exist an N = N(n, ϑ, η)26 for which if we select N points in K uniformly, indepen-
dently, attach to each of them weights 1

N
and find a linear transformation A that brings

this point-set into isotropic position, then AK will be in ϑ-almost isotropic position,
with probability > 1 − η.

We cannot use this lemma in this form, since it is not quantitative. So we proved
that N := cη,ϑn2 will do [60]. Our results were improved to cn log3 n by Bourgain [19]
and to cn log2 n by Rudelson [94]. We used

Theorem 6. For given 0 < η, ϑ < 1, there exists a randomized algorithm, that finds an
affine transformationA such thatAK isϑ-almost isotropic, with probability at least 1−η.

The number of oracle calls is O(n5| ln(ϑη)| ln n).

Further, with probability at least 1 − η,

vol(AK \ 2
√

2n log(1/ε)B) < εvol(AK).27

24 Milman and Pajor (1987) used a slightly different normalization.
25 Such a lemma can be found, e.g., in [89]
26 Here we assumed a preliminary sandwiching, otherwise the R, r in well-guaranteeing K should also be

mentioned.
27 This last statement is a version of Remark 12.
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5.4. The approximate Löwner-John ellipsoids?

As we mentioned, we cannot really find the smallest (in volume) circumscribed, or the
largest inscribed ellipsoids for a given well-guaranteed K ⊆ R

n. Not even with a ran-
domized algorithm. At the same time, we have a randomized algorithm [60] that finds
in O∗(n5) steps a linear transformation A such that

B(0, 1 − ε) ⊆ AK ⊆ B(0, n + ε).

More precisely, we have an algorithm which finds approximately the isotropic position
of K and also, we have the following theorem.

Theorem 7. If AK is in isotropic position of K then

√
n + 2

n
B ⊆ AK ⊆

√
n(n + 2)B.

Observe that the ratio of the upper and lower bounds is n. Again, if AK is the regular
simplex, then this is sharp. So the preimage of these balls can replace the LJ-ellipsoids
in many cases.

(A similar result was independently proved by Gy. Sonnevend [97].)

Remark 13. (a) We have to be careful: our algorithm gives only the approximate iso-
tropic position, but it is not too hard to show that that gives a good approximation in
Theorem 7. (b) One reason why we would not call what we got an approximate LJ-ellip-
soid is that the LJ ellipsoid was defined as the minimum volume ellipsoid containing K .

5.5. Volume of a “well sandwiched” K

Assume that K is brought into near isotropic position, using O∗(n5) oracle calls. After
this, we omit the parts of K outside the ball of radius 2

√
2n log(1/ε). We lose at most

a fraction of ε of its volume (see Remark 12). Thus we reduced the problem to the case
when B(0, 1) ⊆ K ⊆ √

8n log(1/ε)B(0, 1), in time O∗(n5). More generally, one can
compute the volume of a convex body K satisfying B ⊆ K ⊆ dB in time O∗(n4d2).

Put Ki := K∩B(0, 2i/n) (i = 0, . . . , m = �n log2 d�). K0 = B(0, 1) and Km = K .
Roughly speaking, using random walks, we generate p = 400ε−2n log n = O∗(n) ran-
dom points in each Ki and count how many of them fall in Ki−1; this gives an estimate of
the ratio vol(Ki−1)/vol(Ki). Then the telescopic product (3) yields the approximation
of vol(K).

However, to improve the algorithm a little bit, i.e., for some technical reasons, we
replace these volumes by the integrals of the local conductance functions, �i defined by
the truncated bodies Ki . Then we take the corresponding telescopic product to estimate
the volume. At this point we stop giving the details but remark that the actual algorithm
becomes more complicated because of several technical reasons.
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Theorem 8. Assume that K satisfies B ⊆ K ⊆ dB. Then the probability that the value
ζ returned by the algorithm is between (1− ε)vol(K) and (1+ ε)vol(K) is at least 3/4.
With probability at least 9/10, the total number of oracle calls is

O

(
n4d2

ε2 ln n ln d(ln
n

ε
)2
)

.

With the isotropic sandwiching we can use d =
√

n
log(1/ε)

. Thus, by and large, we

get back Theorem 1: the estimates are slightly weaker there because the sandwiching
is more expensive than the estimates for the sandwiched body. We emphasize that here
one has to be very cautious, otherwise one can get into circular arguments: to bring K

into sandwiched situation we already do almost everything we need to get its volume:
we generate recursively uniformly distributed points in Ki .

6. Comparison of algorithms

First I will count the number of oracle queries in our O∗(n5) KLS algorithm [60], then
provide a table that compares some features of the algorithms considered until now.

How many steps?

1. Preliminary sandwiching needs O∗(n4) Oracle queries.
2. Improving the average local conductance . . . are technical steps which we skip here.
3. Bringing into isotropic position has two subcases: the very elongated body and the

not too elongated one:
– For K with B ⊆ K ⊆ 10nB: Theorem 2 with N := 80n2

ϑη
random points uses

O(n3d2 + Nn2d2) oracle queries, which would be O∗(n5) if we could achieve
d := O(

√
n). We achieve this by an involved interlacing method but an alter-

native way is to achieve only d = O(n) in a much simpler way and use the
Bourgain-Rudelson results, mentioned on p361.

– For the general case we notice that if K is very badly sandwiched and we bring
into isoperimetric position only the “near part”: K ∩ (10nB(0, 1)) then the dia-
meter decreases by a constant factor and we may iterate this: this happens only
O(log n) times.

4. When K is in isotropic position, we delete those parts which are outside of the ball

B(0,
√

8n
log(1/ε)

). This causes a relative error ≤ ε and provides a good sandwiching.

For each Ki we use p := 400n log n

ε2 random points, altogether, O(
n2 log2 n

ε2 ). points.

For that we need O∗(n5) oracle queries.

The comparison table. To avoid getting an overcrowded table, I left some boxes empty.
Each algorithm below, except the second one, runs on time proportional to 1

ε2

logk 1
ε

log 1
η

, in the second algorithm we have 1
ε4 instead of 1

ε2 .

Each algorithm has a pre-sandwiching phase, to get to d0 := n
√

n, which is deter-
ministic and costs O(n4 log(R/r)) questions.



364 M. Simonovits

Authors Walk Sandwiching Sampling Remark #S
Type method

Dyer-Frieze grid d = n
√

n Break-
-Kannan [36] +Minkowski sum through n23

Lovász- grid Localization
-Sim.[78] Lemma n16

Applegate grid two cubes Metropolis
-Kannan [8] d = n n10

Lovász Ball
[76] walk n8

Dyer-Frieze grid two cubes
[35] n8

Lovász ball randomized, d = cn Metropolis
-Sim.[80] walk

∫
Rn e−�, Cost: n7 n10

Kannan-Lovász ball Isotropic, interlaced c1n
3d2+ Theorems

-Sim. [60] walk Cost: n5 c2Nn2d2 1 2 n5

Lovász [77] Hit-and Warm start Warm
-Run see Remark 11 start n5

Lovász “Simulated See
-Vempala [84] Annealing” Appendix II n4

7. Eigenvalues, conductance, Isoperimetric
Inequalities and Rapid Mixing

7.1. Why are the isoperimetric inequalities important?

In these algorithms it is very important to understand, why the isoperimetric inequalities
are important.

Isoperimetric inequalities belong to the classical part of mathematics. In analyzing
Rapid Mixing of Markov Chains they are important for the following reason:

Consider the example of two intersecting balls in Section 2.3. There we have defined
a non-convex body: the union of two unit balls, D

∗(0, x). Choose x at random from the
unit sphere. If we start a random walk say from the origin, then we have only exponen-
tially small chance to reach the center of the other ball, because they can be separated
from each other by an exponentially small surface: there is a bottleneck between the two
balls and we have no chance to find this bottleneck.

So to hope for rapid mixing we need lower bounds for the sizes of separating sur-
faces, and these are the Isoperimetric Inequalities. We cannot hope for such inequalities
in all the cases but we can if K is convex.

7.2. Localization Lemma

In [78] we established a method which made easier to prove various isoperimetric
inequalities.

Dyer, Frieze and Kannan conjectured an isoperimetric inequality which we proved
in a stronger form [78]:

Theorem 9 (An isoperimetric inequality). Let K ⊆ R
n be convex, with diameter d.

Assume that a surface with (n − 1)-dimensional measure f splits K into two sets K∗
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and K∗∗. Then
min{vol(K∗), vol(K∗∗)} < f d. (7)

If we take the hyperplane sections of K orthogonal to a direction s, then their mea-
sure gives a log-concave function, (mostly) with one maximum and decreasing in one
of the two directions. So, (7) is trivial for hyperplane sections. Theorem 9 asserts that
for any surface (7) still holds.

Theorem 9 is was slightly sharpened and strongly generalized in several steps, see
[59]. The proof was based on a “Localization Lemma” that reduces the high-dimen-
sional cases to 1-dimensional cases. (An alternative approach to prove such inequalities
was given by Khachiyan and Karzanov [64] and a similar approach was used by Payne
and Weinberger [93].)

7.2.1. Conductance

The bottleneck
prevents rapid
mixing

Instead of Isoperimetric Inequalities we often use a version
of theirs: the conductance (introduced by Sinclair and Jer-
rum [53]). The conductance itself has several versions, e.g.,
edge-conductance, vertex conductance, µ-conductance. For
a random walk on a not necessarily convex K ⊆ R

n one way
to define the “edge-conductance” is by

�(K) = min
S⊆K

P(S)≤1/2

P(xi+1 ∈ S
∣∣ xi ∈ S)

P(S)
. (8)

The connection of the conductance to the isoperimetry can be understood easily: If
we can cut K into two large parts S and K \S by a small surface F , then the probability
of jumping from one side to the other corresponds to the δ-neighbourhood of F : so that
is small: the conductance is small . . .

Why is this notion important? We generate a given distribution on a convex body
K ⊆ R

n by using an appropriate Markov Chain. Here “appropriate” means two things:
(a) that its limit distribution is the required one (independently from the initial

distribution) and
(b) that the distribution converges to its limit distribution relatively fast.
To formulate more precise statements, mostly we introduce some distances on the

distributions, and if ρ(P, Pi) is a distance of the distribution P from Pi , then mostly we
use results of the following form:

ρ(P, Pi) ≤ ρ(P, P0) ·
(

1 − �2

2

)i

, (9)

where P is the limit distribution, P0 is the initial distribution, and � is defined by (8),
characteristic for K , and the random walk. A typical problem occuring in our proofs is
that ρ(P, P0) is often “too large”!

The “distance” of distributions in (9) varies from place to place: sometimes we use
L2-norm, or L1-norm, which is equivalent with using total variation distance,28 but,

28 This is equivalent with the L1-norm if the density functions exist.
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e.g., in [60] we used the asymmetric

M(P, Q) = sup
S

|P(S) − Q(S)|√
Q(S)

.

Historically it was clear that the spectral gap29 is strongly connected to the speed
of mixing of a random walk. J. Cheeger [29] proved for compact Riemannian manifolds
of dimension n that some isoperimetric properties are directly connected to the spectral
gap. This was translated to the discrete case by several people, like Alon, Milman [6]
[7], Dodziuk and Kendall [32], Tanner [99]. The connection is not surprising at all.

For graphs, if a graph has good isoperimetric properties, or large conductance, then
the random walk on the graph will be rapidly mixing.

IV. Negative result for the diameter

8. Diameter and width algorithms

Below the results for the diameter and width are roughly the same. We do not really have
to distinguish them. Speaking of K we always assume that it is convex, bounded and
is given by some oracle: by strong membership oracle in the lower bounds and weak
separation oracles in the upper bounds. (This way we get stronger results!)

Grötschel, Lovász and Schrijver [49] gave a polynomial time deterministic algo-
rithm that computed an upper bound w(K) and a lower bound w(K) for the width, with
w(K)
w(K)

≤ √
n(n + 1).

Elekes [39] proved that there is no polynomial algorithm which would compute
an upper and a lower bounds for the width of a convex K (given by an oracle) with
w(K)
w(K)

≤ 2. Bárány and Füredi improved this [12] by proving

Theorem 10. There is no polynomial time deterministic algorithm that would compute
an upper bound w(K) and a lower bound w(K) with

w(K)

w(K)
≤
√

n

c log n
.

Much later, Lovász and I proved [79] that

Theorem 11. Every randomized algorithm that computes for every centrally symmetric
convex K ⊆ R

n, given by an oracle, a lower bound w(K) for width(K) with

w(K) ≤ width(K) ≤ n1/4w(K),

has to make at least 2n1/4
calls on the oracle.

29 the difference between the largest in absolute value and the second largest eigenvalue of the Laplacian.
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This means that the width cannot be efficiently computed, not even by randomized
algorithms.

The problem of estimating the diameter or the width of a convex K ⊆ R
n (given

by an oracle) are – at least for centrally symmetric bodies – dual problems and therefore
equivalent: all the negative results for centrally symmetric bodies for width and diameter
are equivalent.

Theorem 11 was improved by Kannan, Lovász, and Simonovits and Brieden, Gritz-
mann and Klee [21] [22] and extended to other metrics.

If K ⊆ R
n is a convex body given by a (well-guaranteed) separation oracle, then it

is not too difficult to prove that

Lemma 4 ([21, 22]). We can compute a ζ(K) with a deterministic polynomial time
algorithm such that ζ(K) ≤ diam(K) ≤ (1 + ε)

√
n · ζ(K).

Proof. (Sketch) We can find a smallest box
∏

[ai, bi] containing K with relative error
ε/3 > 0. The diameter of this box will be the upper bound, the longest side, max[bi −ai]
the lower bound on diam(K): clearly, their ratio is smaller than (1 + ε)

√
n. �	

This can be improved:

Lemma 5. If we have a fixed K and a random orthogonal coordinate system, then,
with high probability the ratio of the upper and lower bounds will be at most
O(

√
n/ log n). �	

Even better, using a construction of M. Kochol, [70] we obtained

Theorem 12 ([21, 22]). For every constant c > 0, we can compute a ζ(K) with a
deterministic polynomial time algorithm such that

ζ(K) ≤ diam(K) ≤ c

√
n

log n
· ζ(K).

(The degree of the polynomial depends on c.)
On the other hand, if a randomized algorithm A produces for every convex K ⊆ R

n

a ζ(K) ≤ diam(K) in polynomially many steps, then for some convex K0 in the n

dimensional Euclidean space R
n

diam(K0)

ζ(K0)
≥ cA ·

√
n

log n
.

This is the most we can get: the lower bound for the randomized approximation
algorithms matches the upper bound for a deterministic one.
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9. Why is the diameter more difficult?

We have seen that for the diameter computation
the randomization does not help. The difficulty comes
from the fact that if we consider the two bodies on
the figure on the left, then the algorithms cannot really
distinguish them: The first body is the ball, the second
one is the “double coned” ball: we select a random
vector x at distance |x| =

√
n

log n
and take the convex

hull of the ball, x and −x.

The arguments of §II/2.7 apply to this situation, showing that the deterministic
algorithms must fail. The same time, the volume of the two caps are so small that the
probability that a random walk reaches them is also negligible: this is why even the
randomized algorithms must fail. We could restrict ourselves to one cap as well, to get
the negative result: we used two caps to get centrally symmetric “test” bodies: then
the negative result immediately implies the analogous result for the width, and also, in
Geometric Functional Analysis the centrally symmetric bodies are used30.

10. Other metrics?

Most of the problems discussed in the last section make sense for other metrics as well.
So, e.g., it is natural to ask, what happens if we replace the Euclidean metrics by some
�p-metrics. Many results generalize to this more general setting. This is not really the
place to go into details. The reader is referred to our paper [22], or some earlier results
of Gritzmann and Klee [42].

11. Another open problem

The problem below refers to the fact that our negative results heavily use that the convex
bodies are given by Oracles. In reality one often meets explicitly given convex bodies
and one would like to know what is the situation for those cases.

Problem. Do we have lower bounds on the number of oracle questions, if K ⊆ R
n is

given in a “concrete form”, not by an oracle?

V. Appendix

12. The analysis of the Hit and Run method

The hit-and run method is one of the most interesting steps for random walks in a convex
body. We have already defined it in Section 4.6.

Lovász proved [77] that

30 The equivalence is not really needed: our proofs easily carry over from one of the two cases to the other.
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Theorem 13. Let K be a convex body in R
n with diameter D, and suppose that K

contains a unit ball. Let w0, w1, . . . be a lazy hit-and-run walk in K with warm start,
and let 0 < ε < 1. Let

N =
⌈

108 ln
1

ε

n2D2

ε2

⌉
.

Then for every set S ⊂ K , for the limit (=uniform) distribution �(.),

|P(wN ∈ S) − �(S)| ≤ ε.

To generate a log-concave distribution see Lovász and Vempala [81], [82].

13. Connection to harmonic functions

Assume we have a random walk on a graph or in a convex domain.31 The probability
pt (x) of being in x at time t is the average of the probabilities of being in the neighbor-
ing points. This is exactly the same mechanism we use to describe the heat propagation.
Therefore it is not surprising at all that the same techniques, equations, inequalities can
be applied to Markov Chains as to describe the heat propagation.

14. Other sources

Again, there are several overlapping parts in the four sections below.

Books: I have already mentioned the book of Grötschel, Lovász, and Schrijver, [49], as a
basic source for the related wider areas. Lovász also wrote a small book [74], describing
some application of the ellipsoid method, and connecting this to the Lenstra-Lenstra-
Lovász approximate basis reduction algorithm [73], and many other things. One can find
downloadable papers on the homepage of Mark Jerrum, now a book [51].

Several analytic aspects of the field, primarily related to the eigenvalue technique
are nicely collected in F. Chung’s book [30] on the spectral properties of graphs.

Surveys: There are many surveys of the field, or research papers with longer introduc-
tions, older and newer ones, that I would warmly recommend for reading, just to mention
some papers of Lovász [75], Dyer and Frieze [35], Bollobás [13], Kannan [56], Jerrum
[51].

Bollobás gave lectures on the topic and wrote them up [13]. It provides a lot of geo-
metric details. Most of which I left out I warmly recommend it to the reader. Perhaps the
excellent survey by Ravi Kannan [56] on the applications of Markov Chain Monte Carlo
methods is the nearest to my approach. It covers a wider area, describing very many
aspect of the field: applications both in combinatorial and in geometric algorithms. Also
in applications to statistical problems which are important but I neglected them here.

Most of these surveys basically approach the field in the same way. The differences
are in the details: where the emphasis is put and how much knowledge is assumed on
the side of the reader.

31 I mean here the grid walk and the ball walk: forget the Hit-and-Run or he Metropolis,. . .
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I would also recommend the survey of Dominic Welsh [101], with the title “Approx-
imate Counting” as one approaching a wider area and being concise, self-contained and
very readable.32

The literature the reader may need can be classified as follows:

(i) Surveys following the same line as mine, (or introductions to research papers).
(ii) Introduction to the theory of Markov Chains: this was the field I neglected the most.

(iii) Description of the general Markov Chain Monte Carlo method. Here I warmly rec-
ommend to visit Mark Jerrum’s Home Page and download some of his papers, book
chapters. I recommend among others, [51] [52]. It is also interesting to see how
[26] analyzes basically the same algorithm by an important alternative method, via
Coupling technique.

(iv) Usage of ingenious formulas in the field.

Further research papers: There are several papers of Lovász describing the volume
computation and related fields and a paper related to his ICM talk in Kyoto, 1990 [75].

Some papers of Lovász and Winkler describe the general theory of random walks on
graphs, and their various applications, [85]. Another approach can be found in Aldous,
Lovász, Winkler [4].

The introduction of the paper of Dyer and Frieze [35] is also a very good source of
information.

Internet sources: The book of Aldous and Fill, the lecture of Bollobás [13], posted on
the homepage of MSRI, Berkeley, [3] Zürich lectures of Jerrum [51] . . .

15. Appendix II: Added in proof II.

I mentioned the important new results of Lovász and Vempala, on p340. The correspond-
ing papers (also listed there) can be found on Vempala’s home-page.

Lovász and Vempala “risk” the conjecture [84] that perhaps an O∗(n2) sampling
algorithm could be devised leading to an O∗(n3) volume algorithm. They also hope that
their results can be extended to integration.

The reader could ask how their algorithm – described in a relatively short paper but
using results from some other of their papers – is related to the algorithms described in
this survey. In brief, they use “simulated annealing” and – instead of estimating ratios
of volumes – they estimate ratios of integrals. (Using integrals has already been used in
previous papers, but in another way.) They use only O(

√
n) bodies Ki and only O∗(

√
n)

points in each of them. For the interested reader, I highly recommend reading (at least
Sections 1, 2, and 5) of their paper [84].

Acknowledgements. I would like to thank to László Lovász his very valuable mathematical and historical
remarks, comments, and also to Vera T. Sós for the many helpful suggestions.

32 Perhaps the proof-sketch described on p299 is misunderstandable: it is restricted – by the last few
sentences – to the grid-walk case.
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Angew. Math. 311-312, 80–100 (1979)
18. Borell, C.: The Brunn-Minkowski inequality in Gauss spaces. Invent. Math. 30, 207–216 (1975)
19. Bourgain, J.: Random points in isotropic convex sets. Convex geometric analysis (Berkeley, CA, 1996),

Math. Sci. Res. Inst. Publ. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 53–58
20. Bourgain, J., Milman, V.D.: Sections euclidiennes et volume des corps symétriques convexes dans Rn.

[Euclidean sections and volume of symmetric convex bodies in Rn] C. R. Acad. Sci. Paris Sér. I Math.
300(13), 435–438 (1985)

21. Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M.: Approximation of
diameters: randomization doesn’t help. Proc. 39th IEEE Symp. Found. Comput. Sci. (FOCS ’98), 1998,
pp. 244–251

22. Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M.: Approximation of radii
and norm-maxima: randomization does not help Matematika, 2003, in print

23. Brieden, A., Gritzmann, P., Klee, V.: Inapproximability of some geometric and quadratic optimiza-
tion problems. Approximation and complexity in numerical optimization (Gainesville, FL, 1999),
Nonconvex Optim. Appl. 42, Kluwer Acad. Publ. Dordrecht, 2000, pp. 96–115

24. Brightwell, G., Winkler, P.: Counting linear extensions is #P -complete. Order 8, 225–242 (1992)
25. Broder, A.: How hard is it to marry at random? (On the approximation of the permanent). Proc. 18th

Annual ACM Symp. Theory Comput. 50–58 (1986)
26. Bubley, R., Dyer, M., Jerrum, M.: An elementary analysis of a procedure for sampling points in a

convex body. Random Structures Algorithms 12(3), 213–235 (1998)
27. Carl, B.: On the entropy of absolutely summing operators. Arch. Math. (Basel) 43(2), 183–186 (1984)
28. Carl, B., Pajor, A.: Gel’fand numbers of operators with values in a Hilbert space. Invent. Math. 94(3),

479–504 (1988)
29. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis (Papers

dedicated to Salomon Bochner, 1969), pp. 195–199, Princeton Univ. Press, Princeton, N.J., 1970
30. Chung, F.R.K.: Spectral Graph Theory, CBMS Reg. Conf. Series 92, Amer. Math. Soc. 1997
31. Diaconis, P.: Group representations in probability and Statistics. Institute of Mathematical Statistics,

Hayward, CA, 1988



372 M. Simonovits

32. Dodziuk, J., Kendall, W.S.: Combinatorial Laplacians and isoperimetric inequality. In: From Local
Times to Global Geometry, Control and Physics, (ed. K. D. Ellworthy), Pitman Res. Notes in Math.
150, 68–74 (1986)

33. Dvoretzky, A.: A theorem on convex bodies and applications to Banach spaces. Proc. Nat. Acad. Sci.
U.S.A. 45(1959), 223–226 (1554)

34. Dyer, M., Frieze, A.: On the complexity of computing the volume of a polytopes. SIAM J. Comp. 17,
967–974 (1988)

35. Dyer, M., Frieze, A.: Computing the volume of convex bodies: a case where randomness provably helps.
In: Probabilistic Combinatorics and Its Applications (ed. Béla Bollobás), Proceedings of Symposia in
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