1 Mathematical Reasoning (Part II) ${ }^{1}$

Proving Statements Containing Implications.

Properties of Integers:
FACT 1 The negative of every integer is an integer.
FACT 2 The sum (and difference) of every two integers is an integer.
FACT 3 The product of every two integers is an integer.
FACT 4 Every integer is either even, or odd.

- DIRECT PROOF

- Assume that P is true.
- Draw out consequences of P.
- Use these consequences to prove Q is true.

EXAMPLE 1. If n is an even integer, then $5 n^{5}$ is an even integer.

EXAMPLE 2. Evaluate the proposed proof of the following result:
If a is an even integer and b is an odd integer, then $3 a-5 b$ is odd.

Proof. Let a be an even integer and b be an odd integer. Then $a=2 n$ and $b=2 n+1$ for some integer n. Therefore,

$$
3 a-5 b=3(2 n)-5(2 n+1)=6 n-10 n-5=-4 n-5=2(-2 n-2)-1 .
$$

Since $-2 n-2$ is an integer, $3 a-5 b$ is odd.

[^0]EXAMPLE 3. The sum of every two odd integers is even.

EXAMPLE 4. Let x be an integer. If $5 x-7$ is odd, then $9 x+2$ is even.

- PROOF BY CASES

EXAMPLE 5. If n is an integer, then $n^{2}+3 n+4$ is an even integer.

Hint: Use the following fact: "Every integer number is either even. or odd."

Negating an implication: Counterexamples
Recall that (see Theorem 21 in the previous part)

$$
\neg(P \Rightarrow Q) \equiv P \wedge(\neg Q)
$$

EXAMPLE 6. P : If n is an integer and n^{2} is a multiple of 4 then n is a multiple of 4 . Question: Is the following "proof" valid?
Let $n=6$. Then $n^{2}=6^{2}=36$ and 36 is a multiple of 4 , but 6 is not a multiple of 4 . Therefore, the statement P is FALSE.

REMARK. The negation of an implication is not an implication!
EXAMPLE 7. Negate the statement: "For all $x, P(x) \Rightarrow Q(x)$."

The value assigned to the variable x that makes $P(x)$ true and $Q(x)$ false is called a counterexample to the statement "For all $x, P(x) \Rightarrow Q(x)$."

EXAMPLE 8. Disprove the following statement:
If a real-valued function is continuous at some point, then this function is differentiable there.

Contrapositive

DEFINITION 9. The statement $\neg Q \Rightarrow \neg P$ is called the contrapositive of the statement $P \Rightarrow$ Q.

EXAMPLE 10. Let P and Q be statement forms. Prove that $\neg Q \Rightarrow \neg P$ is logically equivalent to $P \Rightarrow Q$.

P	Q	$P \Rightarrow Q$	$\neg Q$	$\neg P$	$\neg Q \Rightarrow \neg P$

Methods to prove an implication $P \Rightarrow Q$ (continued)

- CONTRAPOSITIVE PROOF (based on the equivalence $(P \Rightarrow Q) \equiv(\neg Q \Rightarrow \neg P))$
- Assume that $\neg Q$ is true.
- Draw out consequences of $\neg Q$.
- Use these consequences to prove $\neg P$ is true.
- It follows that $P \Rightarrow Q$.

REMARK 11. If you use a contrapositive method, you must declare it in the beginning and then state what is sufficient to prove.

EXAMPLE 12. Let x be an integer. If $5 x-7$ is even, then x is odd.

THEOREM 13. Let n be an integer. Then n is even if and only if n^{2} is even. Proof.

REMARK 14. $(P \Leftrightarrow Q) \equiv(\neg P \Leftrightarrow \neg Q)$
COROLLARY 15. Let n be an integer. Then n is odd iff n^{2} is odd.

Methods to prove an implication $P \Rightarrow Q$ (continued)
EXAMPLE 16. Let S and C be statement forms. Prove that $\neg S \Rightarrow(C \wedge \neg C)$ is logically equivalent to S.

- PROOF BY CONTRADICTION

- Assume that P is true.
- To derive a contradiction, assume that $\neg Q$ is true.
- Prove a false statement C, using negation $\neg(P \Rightarrow Q) \equiv(P \wedge \neg Q)$.
- Prove $\neg C$. It follows that Q is true. (The statement $C \wedge \neg C$ must be false, i.e. a contradiction.)

PROPOSITION 17. If m and n are integers, then $m^{2}-4 n \neq 2$.
Proof.

PROPOSITION 18. Let a, b, and c be integers. If $a^{2}+b^{2}=c^{2}$ then a or b is an even integer. Proof.

DEFINITION 19. A real number x is rational if $x=\frac{m}{n}$ for some integer numbers m and n. Also, x is irrational if it is not rational, that is

PROPOSITION 20. The number $\sqrt{2}$ is irrational.

[^0]: ${ }^{1}$ This part is covered in Sections 1.3-1.4 in the textbook.

