Mathematical Reasoning (Part II) ${ }^{1}$

Proving Statements Containing Implications

Most theorems (or results) are stated as implications.

Trivial and Vacuous Proofs ${ }^{2}$

Let $P(x)$ and $Q(x)$ be open sentences over a domain D. Consider the quantified statement $\forall x \in D, P(x) \Rightarrow Q(x)$, i.e.

$$
\text { For } x \in D \text {, if } P(x) \text { then } Q(x) \text {. }
$$

or Let $x \in D$. If $P(x)$, then $Q(x)$.

The truth table for implication $P(x) \Rightarrow Q(x)$ for all elements x in its domain:

$P(x)$	$Q(x)$	$P(x) \Rightarrow Q(x)$
T	T	T
T	F	F
F	T	T
F	F	T

Trivial Proof If it can be shown that $Q(x)$ is true for all $x \in D$ (regardless the truth value of $P(x)$), then (\#) is true (according the truth table for implications).

Vacuous Proof If it can be shown that $P(x)$ is false for all $x \in D$ (regardless of the truth value of $Q(x)$), then (\#) is true (according the truth table for implications).

EXAMPLE 1. Let $x \in \mathbf{R}$. If $x^{6}-3 x^{4}+x+3<0$, then $x^{4}+1>0$.

EXAMPLE 2. Let $a, b \in \mathbf{R}$. If $a^{2}+2 a b+b^{2}+1 \leq 0$, then $a^{7}+b^{7} \geq 7$.

[^0]
Integers and some of their elementary properties

Properties of Integers:
FACT 1 The negative of every integer is an integer.
FACT 2 The sum (and difference) of every two integers is an integer.
FACT 3 The product of every two integers is an integer.
FACT 4 Every integer is either even, or odd.
DEFINITION A. An integer n is defined to be even if $n=2 k$ for some integer k. An integer n is defined to be odd if $n=2 k+$ for some integer k.

DEFINITION B. The integers m and n are said to be of the same parity if m and n are both even, or both odd. The integers m and n are said to be of opposite parity if one of them is even and the other is odd.

DEFINITION C. Let a and b be integers. We say that b divides a, written $b \mid a$, if there is an integer c such that $b c=a$. We say that b and c are factors of a, or that a is divisible by b and c.

- DIRECT PROOF Let $P(x)$ and $Q(x)$ be open sentences over a domain D. To prove that $P(x) \Rightarrow Q(x)$ for all $x \in D$:
- Assume that $P(x)$ is true for an arbitrary element $x \in D$.
- Draw out consequences of $P(x)$.
- Use these consequences to show that $Q(x)$ must be true as well for this element x.

REMARK 3. Note that if $P(x)$ is false for some $x \in D$, then $P(x) \Rightarrow Q(x)$ is \qquad for this element x. This is why we need only be concerned with showing that $P(x) \Rightarrow Q(x)$ is true for all $x \in D$ for which $P(x)$ is true.

EXAMPLE 4. Let $n \in \mathbf{Z}$. Prove that if n is even, then $5 n^{5}+n+6$ is even.

EXAMPLE 5. The following is an attempted proof of a result. What is the result and is the attempted proof correct?

Proof. Let a be an even integer and b be an odd integer. Then $a=2 n$ and $b=2 n+1$ for some integer n. Therefore,

$$
3 a-5 b=3(2 n)-5(2 n+1)=6 n-10 n-5=-4 n-5=2(-2 n-2)-1
$$

Since $-2 n-2$ is an integer, $3 a-5 b$ is odd.

EXAMPLE 6. Prove that the sum of every two odd integers is even.

EXAMPLE 7. Let $a, b, c, d \in \mathbf{Z}$ with $a \neq 0$ and $b \neq 0$. Prove the following:
(a) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(b) If $a \mid c$ and $b \mid d$, then $a b \mid c d$.
(c) If $a \mid c$ and $a \mid d$, then for all $x, y \in \mathbf{Z}, a \mid(c x+d y)$.

Contrapositive

DEFINITION 8. The statement $\neg Q \Rightarrow \neg P$ is called the contrapositive of the statement $P \Rightarrow Q$.

THEOREM 9. For every two statements P and Q, the implication $P \Rightarrow Q$ and its contrapositive are logically equivalent; that is

$$
P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P
$$

Proof.

P	Q	$P \Rightarrow Q$	$\neg Q$	$\neg P$	$\neg Q \Rightarrow \neg P$

- A PROOF BY CONTRAPOSITIVE Let $P(x)$ and $Q(x)$ be open sentences over a domain D. A proof by contrapositive of an implication is a direct proof of its contrapositive; that is to prove that $P(x) \Rightarrow Q(x)$ for all $x \in D$
* Assume that $\neg Q(x)$ is true for an arbitrary element $x \in D$.
* Draw out consequences of $\neg Q(x)$.
* Use these consequences to show that $\neg P(x)$ must be true as well for this element x.
* It follows that $P(x) \Rightarrow Q(x)$ for all $x \in D$.

REMARK 10. If you use a contrapositive method, you must declare it in the beginning and then state what is sufficient to prove.

EXAMPLE 11. Let x be an integer. If $5 x-7$ is even, then x is odd.

THEOREM 12. Let n be an integer. Then n is even if and only if n^{2} is even.
Proof.

REMARK 13. $(P \Leftrightarrow Q) \equiv(\neg P \Leftrightarrow \neg Q)$
COROLLARY 14. Let n be an integer. Then n is odd iff n^{2} is odd.

EXAMPLE 15. Let $x \in \mathbf{Z}$. Prove that if $2 \mid\left(x^{2}-1\right)$ then $4 \mid\left(x^{2}-1\right)$.

EXAMPLE 16. Let $x, y \in \mathbf{Z}$. If $7 \nless x y$, then $7 \nless x$ and $7 \nmid y$.

- PROOF BY CASES may be useful while attempting to give a proof of a statement concerning an element x in some set D. Namely, if x possesses one of two or more properties, then it may be convenient to divide a case into other cases, called subcases.

Result	Possible cases
$\forall n \in \mathbf{Z}, R(n)$	Case 1. $n \in \mathbf{E}$; Case 2.
$\forall x \in \mathbf{R}, Q(x)$	Case 1. $x<0$ C Case 2._ Case 3. $x>0$
$\forall n \in \mathbf{Z}^{+}, P(n)$	Case 1. _ Case 2. $n \geq 2$.
$\forall x, y \in \mathbf{R} \ni x y \neq 0, P(x, y)$	Case 1. $x y<0 ; \quad$ Case 2.

EXAMPLE 17. Prove that if n is an integer, then $n^{2}+3 n+4$ is an even integer.

EXAMPLE 18. Let $x, y \in \mathbf{Z}$. Prove that x and y are of opposite parity if and only if $x+y$ is odd.

[^0]: ${ }^{1}$ This part is covered in Sections 1.3-1.4 in the textbook.
 ${ }^{2}$ These kind of proofs are rarely encountered in mathematics, however, we consider them as important reminders of implications.

