Mathematical Reasoning (Part III)

Negating An Implication

THEOREM 1. For statements P and Q,

$$
\neg(P \Rightarrow Q) \equiv P \wedge(\neg Q)
$$

Proof.

REMARK 2. The negation of an implication is not an implication!
EXAMPLE 3. Apply Theorem 1 to Negate the following statement: ${ }^{1}$
S : If n is an integer and n^{2} is a multiple of 4 , then n is a multiple of 4 .
S
$\neg S$ \qquad

EXAMPLE 4. Express the following statements in the form "for all ..., if ... then ..." using symbols to represent variables. Then write their negations, again using symbols.
(a) S : Every octagon has eight sides.
\qquad
\qquad
(b) S : Between any two real numbers there is a rational number.

[^0]
Disproving Statements

Case 1. Counterexamples

Let $S(x)$ be an open sentence over a domain D. If the quantified statement $\forall x \in D, S(x)$ is false, then its negation is true, i.e.

Such an element x is called a counterexample of the false statement $\forall x \in D, S(x)$. EXAMPLE 5. Disprove the statement: "If $n \in \mathbf{O}$, then $3 \mid n^{2}+2$."

Solution.

EXAMPLE 6. Negate the statement:"For all $x \in D, P(x) \Rightarrow Q(x)$."

The value assigned to the variable x that makes $P(x)$ true and $Q(x)$ false is a counterexample of the statement "For all $x \in D, P(x) \Rightarrow Q(x)$."

EXAMPLE 7. S : If n is an integer and n^{2} is a multiple of 4 then n is a multiple of 4 .
Question: Is the following "proof" valid?
Let $n=6$. Then $n^{2}=6^{2}=36$ and 36 is a multiple of 4 , but 6 is not a multiple of 4 . Therefore, the statement S is FALSE.

EXAMPLE 8. Disprove the following statement:
If a real-valued function is continuous at some point, then this function is differentiable there.

Case 2: Existence Statements

Consider the quantified statement $\exists x \in D \ni S(x)$. If this statement is false, then its negation is true, i.e.

EXAMPLE 9. Disprove the statement: "There exists an even integer n such that $3 n+5$ is even."

Methods to prove an implication $P \Rightarrow Q$ (continued)

THEOREM 10. Let S and C be statement forms. Then $\neg S \Rightarrow(C \wedge \neg C)$ is logically equivalent to S.

Proof.

COROLLARY 11. Let P, Q and C be statement forms. Then

$$
(P \Rightarrow Q) \equiv((P \wedge \neg Q) \Rightarrow(C \wedge \neg C))
$$

Proof.

- PROOF BY CONTRADICTION

- Assume that P is true.
- To derive a contradiction, assume that $\neg Q$ is true.
- Prove a false statement C, using negation $\neg(P \Rightarrow Q) \equiv(P \wedge \neg Q)$.
- Prove $\neg C$. It follows that Q is true. (The statement $C \wedge \neg C$ must be false, i.e. a contradiction.)

REMARK 12. If you use a proof by contradiction to prove that S, you should alert the reader about that by saying (or writing) one of the following

- Suppose that the statement S is false.
- Assume, to the contrary, that the statement S is false.
- By contradiction, assume, that the statement S is false.

REMARK 13. If you use a proof by contradiction to prove that $P \Rightarrow Q$, your proof might begin with

- Assume, to the contrary, that the statement P is true and the statement Q is false. or
- By contradiction, assume, that the statement P is true, but $\neg Q$ is false.

REMARK 14. If you use a proof by contradiction to prove the quantified statement

$$
\forall x \in D, P(x) \Rightarrow Q(x)
$$

then the proof begins by assuming the existence of a counterexample of this statement. Therefore, the proof might begin with:

- Assume, to the contrary, that there exists some element $x \in D$ for which $P(x)$ is true and $Q(x)$ is false.
or
- By contradiction, assume, that there exists an element $x \in D$ such that $P(x)$ is true, but $\neg Q(x)$ is false.

EXAMPLE 15. Prove that there is no smallest positive real number.

PROPOSITION 16. If m and n are integers, then $m^{2} \neq 4 n+2$.
Proof.

COROLLARY 17. The equation $m^{2}-4 n=2$ has no integer solutions.
COROLLARY 18. If the square of an integer is divided by 4 , the remainder cannot be equal 2 .
COROLLARY 19. The square of an integer cannot be of the form $4 n+2, n \in \mathbf{Z}$.
PROPOSITION 20. Let a, b, and c be integers. If $a^{2}+b^{2}=c^{2}$ then a or b is an even integer. Proof.

DEFINITION 21. A real number x is rational if $x=\frac{m}{n}$ for some integer numbers m and n. Also, x is irrational if it is not rational, that is

The fraction $\frac{m}{n}$ is reduced to lowest terms, if the integers m and n have no common factors except ± 1.

PROPOSITION 22. The number $\sqrt{2}$ is irrational.

A Review of Three Proof Techniques

EXAMPLE 23. Prove the following statement by a direct proof, by a proof by contrapositive and by a proof by contradiction:
"If n is an even integer, then $5 n+9$ is odd."

How to prove (and not to prove) that $\forall x \in D, P(x) \Rightarrow Q(x)$.

	First step of "Proof"	Technique	Goal
1	Assume that there exists $x \in D$ such that $P(x)$ is true.		
2	Assume that there exists $x \in D$ such that $P(x)$ is false.		
3	Assume that there exists $x \in D$ such that $Q(x)$ is true.		
4	Assume that there exists $x \in D$ such that $Q(x)$ is false.		
5	Assume that there exists $x \in D$ such that $P(x)$ and $Q(x)$ are true.		
6	Assume that there exists $x \in D$ such that $P(x)$ is true and $Q(x)$ is false.		
7	Assume that there exists $x \in D$ such that $P(x)$ is false and $Q(x)$ is true.		
8	Assume that there exists $x \in D$ such that $P(x)$ and $Q(x)$ are false.		
9	Assume that there exists $x \in D$ such that $P(x) \Rightarrow Q(x)$ is true.		
10	Assume that there exists $x \in D$ such that $P(x) \Rightarrow Q(x)$ is false.		

Existence Proofs

An existence theorem can be expressed as a quantified statement
$\exists x \in D \ni S(x)$: There exists $x \in D$ such that $S(x)$ is true.
A proof of an existence theorem is called an existence proof.
EXAMPLE 24. There exists real numbers a and b such that $\sqrt{a^{2}+b^{2}}=a+b$.
Proof.

THEOREM 25. (Intermediate Value Theorem of Calculus) If f is a function that is continuous on the closed interval $[a, b]$ and m is a number between $f(a)$ and $f(b)$, then there exists a number $c \in(a, b)$ such that $f(c)=m$.

EXAMPLE 26. Prove that following equation has a real number solution (a root) between $x=2 / 3$ and $x=1$:

$$
x^{3}+x^{2}-1=0 .
$$

Uniqueness Proof

An element belonging to some prescribed set D and possessing a certain property P is unique if it is the only element of D having property P. Typical ways to prove uniqueness:

1. By a direct proof: Assume that x and y are elements of D possessing property P and show that $x=y$.
2. By a proof by contradiction: Assume that x and y are distinct elements of D and show that $x=y$.

EXAMPLE 27. Prove that following equation has a unique real number solution (a root) between $x=2 / 3$ and $x=1$:

$$
x^{3}+x^{2}-1=0 .
$$

Induction ${ }^{2}$

"Domino Effect"
Step 1. The first domino falls.
Step 2. When any domino falls, the next domino falls.
Conclusion. All dominos will fall!

THEOREM 28. ${ }^{3}$ (First Principle of Mathematical Induction) Let $P(n)$ be a statement about the positive integer n. Suppose that $P(1)$ is true. Whenever k is a positive integer for which $P(k)$ is true, then $P(k+1)$ is true. Then $P(n)$ is true for every positive integer n.

Strategy

The proof by induction consists of the following steps:
Basic Step: Verify that $P(1)$ is true.
Induction hypothesis: Assume that k is a positive interger for which $P(k)$ is true .
Inductive Step: With the assumption made, prove that $P(k+1)$ is true.
Conclusion: $P(n)$ is true for every positive integer n.
EXAMPLE 29. Prove by induction the formula for the sum of the first n positive integers

$$
\begin{equation*}
1+2+3+\ldots+n=\frac{n(n+1)}{2} \tag{1}
\end{equation*}
$$

[^1]EXAMPLE 30. Find the sum of all odd numbers from 1 to $2 n+1\left(n \in \mathbf{Z}^{+}\right)$.

EXAMPLE 31. Prove by induction the following formula

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

[^0]: ${ }^{1}$ Cf. to Example 24(c) (Chapter 1 (part 1) of notes).

[^1]: ${ }^{2}$ This topic is covered in Section 5.2 in the textbook.
 ${ }^{3}$ We will prove this theorem later.

