2. Sets (Part I)

Describing a Set

Set-builder notation and its extensions

Set-builder notation: $A=\{x \mid P(x)\}$ is the set of all elements x such that the open sentence $P(x)$ is a true statement. The symbol " \mid " is read "such that".

Extensions: - $A=\{x \in S \mid P(x)\}$ is the set of all elements x in S such that the open sentence $P(x)$ is a true statement.

- $A=\{T \mid P(x)\}$, where T is an expression involving x and $P(x)$ is an open sentence.

EXAMPLE 1. Use set-builder notation and its extensions to describe the following sets in two different ways:
a) O
b) E
c) N
d) Q
e) 5 Z

EXAMPLE 2. Describe the following set using set-builder notation: $A=\{2 t+5 \mid t \in \mathbf{Z}\}$

Two sets are equal if and only if their set-builder rules are logically equivalent:

$$
\forall x,(\{x \mid P(x)\}=\{x \mid Q(x)\}) \Leftrightarrow(P(x) \equiv Q(x))
$$

EXAMPLE 3. Let $A=\{x|x \in \mathbf{R} \wedge| x \mid=1\}$ and $B=\left\{x \mid x \in \mathbf{R} \wedge x^{4}=1\right\}$. Show that $A=B$.

Interval notation:

Intervals:

- bounded intervals:

1. closed interval $[a, b]=$
2. open interval $(a, b)=$
3. half-open,half-closed interval $(a, b]=$
4. half-closed,half-open interval $[a, b)=$

- unbounded intervals:

5. $[a, \infty)=$
6. $(a, \infty)=$
7. $(-\infty, a]=$
8. $(-\infty, a)=$
9. $(-\infty, \infty)=$

EXAMPLE 4. Represent the following sets in interval notation when it is possible.
a) $\{x \in \mathbf{R} \mid(x \geq 0) \wedge(x \in \mathbf{Z})\}=$
b) $\{x \in \mathbf{Z} \mid 3 \leq x<10\}=$
c) $\{x \in \mathbf{R} \mid-2016 \leq x \leq 2017\}=$
d) $\{x|x \in \mathbf{R}| \wedge|x+5| \leq 7\}=$
e) $\{x \in \mathbf{R} \mid \sin x=0\}=$

Subsets

- Two sets, A and B , are equal, written $A=B$, if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!).
- If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$.
- If $A \subseteq B$, but $A \neq B$, then A is a proper subset of B, written $A \subset B$.
- The empty set is the set that doesn't have any elements, denoted by \emptyset or $\}$.
- The universal set is the set that contains all of the elements for a problem, denoted by U.

EXAMPLE 5. Let $A, B \subseteq U$. Then
$A=B \Leftrightarrow \forall x \in U,(x \in A \Leftrightarrow x \in B)$
$A \subseteq B \Leftrightarrow \forall x \in U,(x \in A \Rightarrow x \in B)$
$A \subseteq B \Leftrightarrow$
Question: Let $A=\{n \in \mathbf{Z} \mid n$ is even $\}$ and $B=\left\{n \in \mathbf{Z} \mid n^{2}\right.$ is even $\}$. Are these sets the same?

EXAMPLE 6. Let $A=\{n \in \mathbb{Z} \mid n=3 t-2$ for some $t \in \mathbb{Z}\}$ and $B=\{n \in \mathbb{Z} \mid n=3 t+1$ for some $t \in \mathbb{Z}\}$. Prove that $A=B$.

EXAMPLE 7. Use set notation to reformulate the following theorem: "Every real-valued continuous function on $[a, b]$ is integrable on $[a, b]$." Also describe a universal set. Discuss the converse statement.
infinite set
finite set
cardinality of $A,|A|$
EXAMPLE 8. Given $A=\{0,1,2, \ldots, 8\}, \quad B=\{1,3,5,7\}, \quad C=\{3,5,1,7,3,1\}$, $D=\{5,3,1\}$, and $E=\emptyset$, then which of the following are TRUE?
(a) $B=C$
$(\mathbf{b}) B \subseteq C$
$(\mathbf{c}) B \subset C$
$(\mathbf{d}) C \subseteq B$
$(\mathbf{e}) D \subset B$
$(\mathbf{f}) D \subseteq B$
$(\mathbf{g}) B \subset D$
(h) $8 \in A$
(i) $\{4,6\} \subset A$
$(\mathbf{j}) 1,5 \subset A$
$(\mathbf{k}) 9 \notin C$
$(\mathbf{l}) D \subseteq D$
$(\mathbf{m}) \emptyset=0$
$(\mathbf{n}) 0 \in E$
(o) $A \in A$
$(\mathbf{p})|A|=8$
(q) $|C|=7$
$(\mathbf{r})|E|=0$
$(\mathbf{q})|B|=5$

EXAMPLE 9. Which of the following are TRUE?

1. $\mathbf{Z}^{+} \subset \mathbf{Z}$
2. $\mathbf{Z}^{+} \subseteq \mathbf{Z}$
3. $\mathbf{N} \subseteq \mathbf{Z}^{+}$
4. $\mathbf{Z} \subset \mathbf{Q} \subseteq \mathbf{R}$

EXAMPLE 10. Describe the set $S=\{x \in \mathbf{R} \mid \sin x=2\}$ in another manner.

Power set

EXAMPLE 11. Give all the subsets of $A=\{0,1\}$

DEFINITION 12. Let A be a set. The power set of A, written $P(A)$, is

$$
P(A)=\{X \mid X \subseteq A\}
$$

EXAMPLE 13. Let $A=\{-1,0,1\}$.

1. Write all subsets of A.
2. Find all elements of power set of A.
3. Write 3 subsets of $P(A)$.
4. Find $|P(A)|$
5. Compute $|P(P(A))|$.
6. What are $|P(A)|$ and $|P(P(A))|$ for an arbitrary set A ?

EXAMPLE 14. Find
(a) $P(\emptyset)$
(b) $P(P(\emptyset))$
(c) $P(\{-1\})$
(d) $P(\{\emptyset,\{\emptyset\}\})$

REMARK 15. Note that

$$
\emptyset \subseteq\{\emptyset,\{\emptyset\}\}, \quad \emptyset \subset\{\emptyset,\{\emptyset\}\}, \quad\{\emptyset\} \subset\{\emptyset,\{\emptyset\}\}, \quad\{\emptyset\} \in\{\emptyset,\{\emptyset\}\},
$$

as well as

$$
\{\{\emptyset\}\} \subseteq\{\emptyset,\{\emptyset\}\}, \quad\{\{\emptyset\}\} \notin\{\emptyset,\{\emptyset\}\}, \quad\{\{\emptyset\}\} \in P(\{\emptyset,\{\emptyset\}\}) .
$$

VENN DIAGRAMS

- a visual representation of sets (the universal set U is represented by a rectangle, and subsets of U are represented by regions lying inside the rectangle).

EXAMPLE 16. Use Venn diagrams to illustrate the following statements:
(a) $A=B$

(c) A and B are not subsets of each other.

(b) $A \subset B \subset C$

SET OPERATIONS

DEFINITION 17. Let A and B be sets. The union of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically:

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

DEFINITION 18. Let A and B be sets. The intersection of A and B, written $A \cap B$, is the set of all elements in common with A and B. Symbolically:

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

\square

DEFINITION 19. Let A and B be sets. The complement of A in B denoted $B-A$, is $\{b \in B \mid b \notin A\}$.

REMARK 20. For convenience, if U is a universal set and A is a subset in U, we will write $U-A=\bar{A}$, called simply the complement of A.

set notation	$=$	\subset, \subseteq	\cup	\cap	\square	\emptyset
logical connectivity						

EXAMPLE 21. Let $U=\{0,1,2, \ldots, 9,10\}$ be a universal set, $A=\{0,2,4,6,8,10\}$, and $B=\{1,3,5,7,9\}$. Find

$$
(\overline{A \cap B}) \cap(\overline{A \cup B}) .
$$

Cartesian Product

DEFINITION 22. Let A and B be sets. The Cartesian product of A and B, written $A \times B$, is the following set:

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Informally, $A \times B$ is the set of ordered pairs of objects.

EXAMPLE 23. Given $A=\{0,1\}$ and $B=\{4,5,6\}$.
(a) Does the pair $(6,1)$ belong to $A \times B$?
(b) List the elements of $A \times B$.
(c) What is the cardinality of $A \times B$?
(d) List the elements of $A \times A \times A$.
(e) Does the triple $(1,6,4)$ belong to $A \times B \times B$?
(f) Describe the following sets $R \times R, R \times R \times R$.

