2. Sets (Part I)

Describing a Set

Set-builder notation and its extensions

Set-builder notation: $A = \{x | P(x)\}$ is the set of all elements x such that the open sentence P(x) is a true statement. The symbol "|" is read "such that".

Extensions: • $A = \{x \in S | P(x)\}$ is the set of all elements x in S such that the open sentence P(x) is a true statement.

• $A = \{T | P(x)\}$, where T is an expression involving x and P(x) is an open sentence.

EXAMPLE 1. Use set-builder notation and its extensions to describe the following sets in two different ways:

a) O

- **b**) **E**
- c) N
- d) Q
- e) 5Z

EXAMPLE 2. Describe the following set using set-builder notation: $A = \{2t + 5 | t \in \mathbb{Z}\}$

Two sets are equal if and only if their set-builder rules are logically equivalent:

$$\forall x, (\{x|P(x)\} = \{x|Q(x)\}) \Leftrightarrow (P(x) \equiv Q(x)).$$

EXAMPLE 3. Let $A = \{x | x \in \mathbf{R} \land |x| = 1\}$ and $B = \{x | x \in \mathbf{R} \land x^4 = 1\}$. Show that A = B.

Interval notation:

Intervals:

- bounded intervals:
- 1. closed interval [a, b] =

- 2. open interval (a, b) =
- 3. half-open, half-closed interval (a, b] =
- 4. half-closed, half-open interval [a, b] =
 - unbounded intervals:
- 5. $[a, \infty) =$
- 6. $(a, \infty) =$
- 7. $(-\infty, a] =$
- 8. $(-\infty, a) =$
- 9. $(-\infty,\infty) =$

EXAMPLE 4. Represent the following sets in interval notation when it is possible.

- a) $\{x \in \mathbf{R} | (x \ge 0) \land (x \in \mathbf{Z})\} =$
- **b)** $\{x \in \mathbf{Z} | 3 \le x < 10\} =$
- c) $\{x \in \mathbf{R} | -2016 \le x \le 2017\} =$
- d) $\{x|x \in \mathbf{R} | \land |x+5| \le 7\} =$
- e) $\{x \in \mathbf{R} | \sin x = 0\} =$

Subsets

- Two sets, A and B, are equal, written A = B, if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!).
- If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$.
- If $A \subseteq B$, but $A \neq B$, then A is a **proper** subset of B, written $A \subset B$.
- The empty set is the set that doesn't have any elements, denoted by \emptyset or $\{\}$.
- The **universal set** is the set that contains all of the elements for a problem, denoted by U.

EXAMPLE 5. Let $A, B \subseteq U$. Then $A = B \Leftrightarrow \forall x \in U, (x \in A \Leftrightarrow x \in B)$ $A \subseteq B \Leftrightarrow \forall x \in U, (x \in A \Rightarrow x \in B)$ $A \subseteq B \Leftrightarrow$

Question: Let $A = \{n \in \mathbb{Z} | n \text{ is even}\}$ and $B = \{n \in \mathbb{Z} | n^2 \text{ is even}\}$. Are these sets the same?

EXAMPLE 6. Let $A = \{n \in \mathbb{Z} | n = 3t - 2 \text{ for some } t \in \mathbb{Z}\}$ and $B = \{n \in \mathbb{Z} | n = 3t + 1 \text{ for some } t \in \mathbb{Z}\}$. Prove that A = B.

EXAMPLE 7. Use set notation to reformulate the following theorem: "Every real-valued continuous function on [a, b] is integrable on [a, b]." Also describe a universal set. Discuss the converse statement. infinite set

finite set

cardinality of A, |A|

EXAMPLE 8. Given $A = \{0, 1, 2, ..., 8\}, B = \{1, 3, 5, 7\}, C = \{3, 5, 1, 7, 3, 1\},$ $D = \{5, 3, 1\}, and E = \emptyset, then which of the following are TRUE?$ (a) B = C (b) $B \subseteq C$ (c) $B \subset C$ (d) $C \subseteq B$ (e) $D \subset B$ (f) $D \subseteq B$ (g) $B \subset D$ (h) $8 \in A$ (i) $\{4, 6\} \subset A$ (j) $1, 5 \subset A$ (k) $9 \notin C$ (l) $D \subseteq D$ (m) $\emptyset = 0$ (n) $0 \in E$ (o) $A \in A$ (p) |A| = 8 (q) |C| = 7 (r) |E| = 0 (q) |B| = 5

EXAMPLE 9. Which of the following are TRUE?

- 1. $\mathbf{Z}^+ \subset \mathbf{Z}$
- 2. $\mathbf{Z}^+ \subseteq \mathbf{Z}$
- 3. $\mathbf{N} \subseteq \mathbf{Z}^+$
- 4. $\mathbf{Z} \subset \mathbf{Q} \subseteq \mathbf{R}$

EXAMPLE 10. Describe the set $S = \{x \in \mathbf{R} | \sin x = 2\}$ in another manner.

Power set

EXAMPLE 11. Give all the subsets of $A = \{0, 1\}$

DEFINITION 12. Let A be a set. The power set of A, written P(A), is

$$P(A) = \{X \mid X \subseteq A\}.$$

EXAMPLE 13. Let $A = \{-1, 0, 1\}$.

- 1. Write all subsets of A.
- 2. Find all elements of power set of A.
- 3. Write 3 subsets of P(A).
- 4. Find |P(A)|
- 5. Compute |P(P(A))|.
- 6. What are |P(A)| and |P(P(A))| for an arbitrary set A?

EXAMPLE 14. Find

- (a) $P(\emptyset)$
- (b) $P(P(\emptyset))$
- (c) $P(\{-1\})$
- (d) $P(\{\emptyset, \{\emptyset\}\})$

REMARK 15. Note that

 $\emptyset \subseteq \left\{ \emptyset, \left\{ \emptyset \right\} \right\}, \quad \emptyset \subset \left\{ \emptyset, \left\{ \emptyset \right\} \right\}, \quad \left\{ \emptyset \right\} \subset \left\{ \emptyset, \left\{ \emptyset \right\} \right\}, \quad \left\{ \emptyset \right\} \in \left\{ \emptyset, \left\{ \emptyset \right\} \right\},$

as well as

 $\left\{ \left\{ \emptyset \right\} \right\} \subseteq \left\{ \emptyset, \left\{ \emptyset \right\} \right\}, \quad \left\{ \left\{ \emptyset \right\} \right\} \not\in \left\{ \emptyset, \left\{ \emptyset \right\} \right\}, \quad \left\{ \left\{ \emptyset \right\} \right\} \in P(\left\{ \emptyset, \left\{ \emptyset \right\} \right\}).$

VENN DIAGRAMS

- a visual representation of sets (the universal set U is represented by a rectangle, and subsets of U are represented by regions lying inside the rectangle).

(c) A and B are not subsets of each other.

SET OPERATIONS

DEFINITION 17. Let A and B be sets. The union of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically:

$$A \cup B = \{x | x \in A \lor x \in B\}.$$

DEFINITION 18. Let A and B be sets. The **intersection** of A and B, written $A \cap B$, is the set of all elements in common with A and B. Symbolically:

$$A \cap B = \{x | x \in A \land x \in B\}.$$

U

DEFINITION 19. Let A and B be sets. The complement of A in B denoted B - A, is $\{b \in B | b \notin A\}$.

REMARK 20. For convenience, if U is a universal set and A is a subset in U, we will write $U - A = \overline{A}$, called simply the **complement** of A.

set notation	=	\subset,\subseteq	U	\cap	Ē	Ø
logical connectivity						

EXAMPLE 21. Let $U = \{0, 1, 2, ..., 9, 10\}$ be a universal set, $A = \{0, 2, 4, 6, 8, 10\}$, and $B = \{1, 3, 5, 7, 9\}$. Find

 $(\overline{A \cap B}) \cap (\overline{A \cup B}).$

Cartesian Product

DEFINITION 22. Let A and B be sets. The **Cartesian product** of A and B, written $A \times B$, is the following set:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Informally, $A \times B$ is the set of **ordered** pairs of objects.

EXAMPLE 23. Given $A = \{0, 1\}$ and $B = \{4, 5, 6\}$.

- (a) Does the pair (6,1) belong to $A \times B$?
- (b) List the elements of $A \times B$.
- (c) What is the cardinality of $A \times B$?
- (d) List the elements of $A \times A \times A$.

- (e) Does the triple (1, 6, 4) belong to $A \times B \times B$?
- (f) Describe the following sets $R \times R$, $R \times R \times R$.