5.5: Congruences

Congruences and their properties

Discuss the following problem:
EXAMPLE 1. Are there any integers x and y such that $x^{2}=4 y+3$?

Recall that congruence $\bmod n$ is an equivalence relation on \mathbf{Z}, i.e.
1.
2.
3.

PROPOSITION 2. Let $a, b, c, d \in \mathbf{Z}$ and let $n \in \mathbf{Z}^{+}$. Then

1. If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then $a+c \equiv b+d(\bmod n)$.
2. If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then $a c \equiv b d(\bmod n)$.
3. If $a b \equiv a c(\bmod n)$ and $\operatorname{gcd}(a, n)=1$ then $b \equiv c(\bmod n)$.

Proof.

REMARK 3. If $\operatorname{gcd}(a, n) \neq 1$, then (3) maybe false.

COROLLARY 4. If $a \equiv b(\bmod n)$ then $a^{k} \equiv b^{k}(\bmod n)$ for every $k \in \mathbf{Z}^{+}$.

EXAMPLE 5. Prove that $7 \mid 6^{1000}-1$ and $7 \mid 6^{1001}+1$.

EXAMPLE 6. What is the last digit of 7^{1258} ?

PROPOSITION 7. Let $n \in \mathbf{Z}, n>1$. If $a \in \mathbf{Z}$, then a is congruent modulo n to exactly one of the integers $0,1,2, \ldots, n-1$.

EXAMPLE 8. Show that square of any integer is congruent to 0 or to 1 (modulo 4). Then derive another proof of Example 1.

Recall the definition of congruence class of a modulo n :

$$
[a]=\{x \in \mathbf{Z} \mid x \equiv a(\bmod n)\} .
$$

Note that

1. For any integer $a,[a]$ is a set, not an integer.
2. If $0 \leq a<n$, then $[a]$ can be described as the set of integers that give a remainder of a when divided by n. (In this case we call a a standard representative of $[a]$.)
3. If $[a]=[b]$, it does not mean $a=b$, only that $a \equiv b(\bmod n)$ or that a and b give the same reminder when divided by n.

The set of congruence classes. Modular Arithmetic
Consider the following partition of \mathbf{Z} by set of congruence classes:

$$
\mathbf{Z}_{n}=\{[0],[1],[2], \ldots,[n-1]\}
$$

Addition on $\mathbf{Z}_{n}:[a]+[b]=[a+b]$
Multiplication on $\mathbf{Z}_{n}:[a][b]=[a b]$
EXAMPLE 9. Give addition and multiplication tables for \mathbf{Z}_{n} for $n=2,3$.

$n=2$| + | $[\mathbf{0}]$ | $[\mathbf{1}]$ |
| :---: | :---: | :---: |
| $[\mathbf{0}]$ | | |
| $[\mathbf{1}]$ | | |

\cdot	$[\mathbf{0}]$	$[\mathbf{1}]$
$[\mathbf{0}]$		
$[\mathbf{1}]$		

$n=3$| + | $[\mathbf{0}]$ | $[\mathbf{1}]$ | $[\mathbf{2}]$ |
| :---: | :---: | :---: | :---: |
| $[\mathbf{0}]$ | | | |
| $[\mathbf{1}]$ | | | |
| $[\mathbf{2}]$ | | | |
| | | | |

\cdot	$[\mathbf{0}]$	$[\mathbf{1}]$	$[\mathbf{2}]$
$[\mathbf{0}]$			
$[\mathbf{1}]$			
$[\mathbf{2}]$			

EXAMPLE 10. Compute
(a) in \mathbf{Z}_{6},

$$
\begin{aligned}
& {[2][3]=} \\
& {[2][4]=}
\end{aligned}
$$

(b) in \mathbf{Z}_{11},

$$
[6][7]=
$$

$$
[25]+[22]=
$$

THEOREM 11. Let $n \in \mathbf{Z}, n>1$.

1. Addition in \mathbf{Z}_{n} is commutative

2. Addition in \mathbf{Z}_{n} is associative

3. [0] is the identity of \mathbf{Z}_{n} w.r.t. addition:
4. Every element of \mathbf{Z}_{n} has an inverse w.r.t. addition. Namely, for every $a \in \mathbf{Z}$ the additive inverse of $[a]$ is $[-a]$.

THEOREM 12. Let $n \in \mathbf{Z}, n>1$.

1. Multiplication in \mathbf{Z}_{n} is commutative
2. Multiplication in \mathbf{Z}_{n} is associative
3. [1] is the multiplicative identity of \mathbf{Z}_{n} :
4. The following distributive laws hold:

$$
\begin{aligned}
& {[a]([b]+[c])=} \\
& ([a]+[b])[c]=
\end{aligned}
$$

DEFINITION 13. An element $[a] \in \mathbf{Z}_{n}$ has an inverse w.r.t. multiplication if there exists $[x] \in \mathbf{Z}_{n}$ such that $[a][x]=[1]$.

EXAMPLE 14. [5] is invertible in \mathbf{Z}_{9} because

However, [3] and [6] are not invertible in \mathbf{Z}_{9} because

THEOREM 15. Let $[a] \in \mathbf{Z}_{n}$. Then $[a]$ has a multiplicative inverse if and only if a and n are relatively prime, i.e. $\operatorname{gcd}(a, n)=1$.

Proof.

EXAMPLE 16. (a) Is [51] invertible in \mathbf{Z}_{65} w.r.t. multiplication? If yes, find its inverse.
(b) Find the least positive integer x that satisfies the following congruence

$$
51 x \equiv 3(\bmod 65)
$$

Fermat's Little Theorem

Question: Which of the following are true for any integer a ?

- $2 \mid a^{2}-a$
- $3 \mid a^{3}-a$
- $4 \mid a^{4}-a$
- $5 \mid a^{5}-a$

What is wrong with number 4 ?

Fermat's Little Theorem. For any prime integer p and $a \in \mathbf{Z}$,

$$
p \mid a^{p}-a
$$

Equivalently
Alternative version of Fermat's Little Theorem. For any prime integer p and $a \in \mathbf{Z}$ such that a and p are relatively prime, i.e. $\operatorname{gcd}(a, p)=1$, one has

$$
p \mid a^{p-1}-1 \quad \text { or } \quad a^{p-1} \equiv 1(\bmod p)
$$

EXAMPLE 17. Find the remainder if 7^{985} is divided by 13.

