CHAPTER 16 – IDENTIFICATION NUMBERS

Consider the UPC code on a can of RO \star TEL tomatoes

The scanner is not working so the clerk enters the numbers by hand as

0 64144 28263 2

The computer recognizes this as an error. What happened?

The UPC codes use a *check digit* to minimize scanning errors. A check digit is a digit included in a code to help detect errors.

For the UPC code $a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}a_{11}a_{12}$, the check digit, a_{12} , is chosen so that *S* a multiple of 10 where

 $S = 3a_1 + a_2 + 3a_3 + a_4 + 3a_5 + a_6 + 3a_7 + a_8 + 3a_9 + a_{10} + 3a_{11} + a_{12}.$

What is the check digit for a can of Ranch Style Beans if the first eleven digits are 0 46900 00108?

When talking about check digits, modular arithmetic will be helpful.

Definition: Congruence Modulo m

Let *a*, *b*, and *m* be integers with $m \ge 2$.

- Then *b* mod *m* is the remainder when *b* is divided by *m*.
- *a* and *b* are congruent modulo *m* (written as $a \equiv b \mod m$) if they both have the same remainder when divided by *m*
 - This can also means that
 - a b is divisible by m,
 - a b is a multiple of m, and
 - a b has a remainder of 0 when divided by m

Find the following values:

- (a) $37 \mod 5 =$ _____
- (b) 73 mod 11 = _____
- (c) $11 \mod 15 =$ _____
- (d) $18 \mod 2 =$ _____

Determine if the congruences below are true or false:

$$28 \equiv 3 \mod 5 \qquad \qquad 98 \equiv 56 \mod 9$$

$$32 \equiv 3 \mod 6 \qquad \qquad 46 \equiv 22 \mod 12$$

Some types of errors when dealing with identification numbers are

- Replacing one digit with a different digit (<u>single digit error</u>)
- Transposing two adjacent digits (adjacent transposition error)
- Transposing two digits that are separated by another digit (jump transposition error)

Assume that the correct code was 5678 and provide an example of these errors:

Single digit error:

Adjacent Transposition Error:

Jump Transposition Error:

Note that some of the digits in the UPC code are multiplied by 3. Those digits had a *weight* of 3. Other codes use different weights.

A code $a_1a_2a_3a_4a_5$ uses the last digit as a check digit. The check digit is found using the formula

$$a_5 = (a_1 + 7a_2 + a_3 + 7a_4) \mod 8$$

(a) What is the check digit for the code 5384?

(b) Find the value of the missing digit x in the code 428x3

Check digits are designed to catch errors, but unfortunately, in some cases, not all errors will be caught. So how do we determine which errors will <u>NOT</u> be caught.

KEY IDEA: For an error *not* to be caught, the correct number and the number with an error must produce the *same* check digit.

- 1. Write a general form of the correct number. Label the correct number with $a_1a_2a_3$... where each a_i represents a single digit. (Note: A digit is some whole number 0, 1,...,9.)
- 2. Write a general form of the incorrect number.
 - a. For transposition errors, we will rearrange the a_i according to the type of transposition.
 - b. For single digit errors, write the number using e_i to represent the error for the digit that should have been a_i .
- 3. Find the check digits for the correct number and incorrect number mod *m*.
- 4. The error will NOT be caught if the check digits are the same mod m. Use the fact that if $x \equiv y \mod m$, then x - y is a multiple of m.
- 5. Determine the multiples that are integers (whole numbers) between 1 and 9.
- 6. The error will not be caught when |x y| takes on these values.
- 7. List the pairs of digits where this occurs.

Let's continue with the same code we were using above to see which errors will not be caught.

Reminder: A code $a_1a_2a_3a_4a_5$ uses the last digit as a check digit. The check digit is found using the formula

 $a_5 = (a_1 + 7a_2 + a_3 + 7a_4) \mod 8$

(c) Will this code find an error if a single digit is entered incorrectly? Let's look at an error in the first digit, a_1 .

Correct Code: $a_1 a_2 a_3 a_4$

Incorrect Code: $e_1 a_2 a_3 a_4$

So the check digit for the correct code is:

 $(a_1 + 7a_2 + a_3 + 7a_4) \mod 8$

and the check digit for the incorrect code is:

 $(e_1 + 7a_2 + a_3 + 7a_4) \mod 8$

The error will NOT be caught if the check digits are the same which means

 $(a_1 + 7a_2 + a_3 + 7a_4) - (e_1 + 7a_2 + a_3 + 7a_4)$ is a multiple of 8.

This simplifies to

____is a multiple of 8.

Digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, so the difference between digits is always an integer and digits can never be separated by more than 9. If the difference between a₁ and e₁ is 0, we didn't really make a mistake, so we want to find the integer multiples of 8 between 1 and 9.
What are the integer multiples of 8 between 1 and 9? ______
So if |a₁ - e₁| = 8, the error will not be caught.
When does this occur? What pair(s) of digits are separated by 8 units?

The same logic also applies to the third digit. Therefore, we need to check the even-numbered positions. Let's look at an error in the second digit, a_2 . Correct Code: $a_1a_2a_3a_4$

Incorrect Code: $a_1e_2a_3a_4$

So the check digit for the correct code is:

 $(a_1 + 7a_2 + a_3 + 7a_4) \mod 8$

and the check digit for the incorrect code is:

 $(a_1 + 7e_2 + a_3 + 7a_4) \mod 8$

The error will NOT be caught if the check digits are the same which means

 $(a_1 + 7a_2 + a_3 + 7a_4) - (a_1 + 7e_2 + a_3 + 7a_4)$ is a multiple of 8.

This simplifies to

is a multiple of 8, which means $7(a_2 - e_2)$ is a multiple of 8, which means, $a_2 - e_2$ is a multiple of _____. Multiples of $\frac{8}{7}$ are $\pm \left\{0, \frac{8}{7}, \frac{16}{7}, \frac{24}{7}, \frac{32}{7}, \frac{40}{7}, \frac{48}{7}, \frac{56}{7}, \frac{64}{7}, \frac{72}{7}, \frac{80}{7}, \dots\right\}$ so what are the integer multiples of $\frac{8}{7}$ between 1 and 9? ______ So if $|a_2 - e_2| =$ _____, the error will not be caught. For what pair(s) of digits does this occur?

The same logic also applies to the fourth digit.

We have now checked all four digits for single-digit errors and have determined that the following single-digit errors will not be caught.

(d) Will this code find all adjacent transposition errors?

Let's look at an adjacent transposition of the first two digits, a_1 and a_2 .

Correct Code: $a_1a_2a_3a_4$ Incorrect Code: $a_2a_1a_3a_4$ So the check digit for the correct code is: $(a_1 + 7a_2 + a_3 + 7a_4) \mod 8$ and the check digit for the incorrect code is:

 $(a_2 + 7a_1 + a_3 + 7a_4) \mod 8$

The error will NOT be caught if the check digits are the same which means

 $(a_1 + 7a_2 + a_3 + 7a_4) - (a_2 + 7a_1 + a_3 + 7a_4)$ is a multiple of 8.

This simplifies to ______ is a multiple of 8, which means ______ is a multiple of 8, which means, ______ is a multiple of ______. Multiples of $\frac{4}{3}$ are $\pm \left\{ 0, \frac{4}{3}, \frac{8}{3}, \frac{12}{3}, \frac{16}{3}, \frac{20}{3}, \frac{24}{3}, \frac{28}{3}, \frac{32}{3}, \dots \right\}$ so what are the integer multiples of $\frac{4}{3}$ between 1 and 9? ______ So if |_____ | = ____, the error will not be caught. For what pair(s) of digits does this occur?

The same logic also applies to the remaining adjacent digits.

(e) Will this code find all jump transposition errors?

Math 167 Ch 16 WIR

Data can be encoded in identification numbers.

An Illinois driver's license contains a portion (Y-YDDD) that represents the last two digits of the year of birth of the driver and codes the birthday according to the following formulas where m represents birth month and drepresents the birth date.

> Male = 31(m - 1) + dFemale = 31(m - 1) + d + 600

(a) What would the Y-YDDD digits of an of Illinois driver's license number look like for a man born on April 23, 1972?

(b) What do you know about a person whose Y-YDDD digits are 0-1866?

(c) What do you know about a person whose Y-YDDD digits are 8-1199?

A car rental company numbers its reservations with the ID number followed by a check digit where the check digit is the ID number mod 7. Is the reservation number 7645882 a valid car rental reservation number?

Credit cards have 15-digit numbers with a check digit in position 16.

Let D = the sum of the digits in odd-numbered positions

Let E = the sum of the digits in even-numbered positions (not including the check digit)

Let T = the number of digits in odd-numbered positions that are larger than 4.

Let $C = 2D + E + T + a_{16}$

The check digit, a_{16} , is chosen so C is a multiple of 10.

The number 5213 7512 3412 3456 was listed on a credit card advertisement. Is the check digit correct?

SAMPLE EXAM QUESTIONS FROM CHAPTER 16

1. Determine the check digit that should be appended to the identification number 572638, if the check digit is the number needed to bring the total of all the digits to a multiple of 10.

(A) The code is invalid(B) 9(C) 1(D) 2(E) None of these

2. Which, if any, of the statements below are true? Mark all correct answers.

- (A) $103 \equiv 1 \mod 4$
- (B) $79 \equiv 2 \mod 11$
- (C) $49 \equiv 13 \mod 12$
- (D) $38 \equiv 4 \mod 7$
- (E) None of these are true.

3. The number 4320 is accidentally entered as 2340. What type of error is this?

- (A) A transposition error
- (B) A jump transposition error
- (C) A single digit error
- (D) A baseball error
- (E) None of these

4. The last three digits of a person's ID are calculated based on their birthday where *m* represents birth month and *d* represents the birth date.

12

Male =
$$35(m - 1) + d$$

Female = $35(m - 1) + d + 500$

(a) What are the last three digits of a man's ID number if he was born on July 4^{th} ?

(b) What do you know about a person if the last three digits of the person's ID number are 585?

(c) What do you know about a person if the last three digits of the person's ID number is 175?

5. A code is given by $a_1a_2a_3a_4$ where a_4 is the check digit. The check digit is $a_4 = 2a_1 + 5a_2 + 7a_3 \mod 9$.

(a) Determine the value of x in the code 4x83, given that the check digit is valid.

(b) Determine if the check digit will find all single digit errors in the second position.

Math 167 Ch 16 WIR

(c) Determine if the check digit will find all transposition errors in the second and third positions.