On Type-Preserving Representations of the Four-Punctured Sphere Group

Tian Yang

Invariants in Low Dimensional Geometry
Gazi Üniversitesi, Ankara, Türkiye

- Goal

Mapping class group action on the character varieties

- Example

Proper, ergodic, mixing, etc

- Σ smooth oriented surface, closed, $\chi(\Sigma)<0$
- Example

- Let $\pi=\pi_{1}(\Sigma), G$ Lie group, $(G=\operatorname{PSL}(2, \mathbb{R}))$.
- Representation variety
$\operatorname{Hom}(\pi, G)=\{$ group homomorphisms $\rho: \pi \rightarrow G\}$
- Remark

If G algebraic, then $\operatorname{Hom}(\pi, G)$ has an affine algebraic variety structure.

- G acts on $\operatorname{Hom}(\pi, G)$ by conjugation.

$$
(g \circ \rho)(x)=g \cdot \rho(x) \cdot g^{-1}, \quad \forall g \in G, x \in \pi
$$

- Character variety

$$
X(\Sigma)=\operatorname{Hom}(\pi, G) / / G
$$

- GIT (Geometric Invariant Theory) quotient, space of the closures of orbits.
- Geometric Interpretation
$X(\Sigma)=$ space of gauge classes of flat principle G-bundles $=$ deformation space of locally homogeneous structures
- Example
$G=P S L(2, \mathbb{R})$, Teichmüller space $\mathcal{T}(\Sigma) \subset X(\Sigma)$
- Theorem (Goldman, Invent. Math. '88)
$\mathcal{T}(\Sigma)$ is a connected component of $X(\Sigma)$, consisting of Fuchsian (discrete and faithful) representations.
- Mapping class group

$$
\operatorname{Mod}(\Sigma)=\operatorname{Diff}^{+}(\Sigma) / \operatorname{Diff}_{0}^{+}(\Sigma)
$$

- $\operatorname{Diff}^{+}(\Sigma)=\{$ orientation pres. self-diffeomorphisms of $\Sigma\}$

$$
\operatorname{Diff}_{0}^{+}(\Sigma)=\left\{\phi \in \operatorname{Diff}^{+}(\Sigma) \mid \phi \simeq i d_{\Sigma}\right\}
$$

" \simeq " homotopy, or equivalently isotopy.

- Remark
$\operatorname{Mod}(\Sigma)$ is a discrete group.
- Dehn-Nielsen Theorem

$$
\operatorname{Mod}(\Sigma) \cong \operatorname{Out}(\pi)
$$

- $\operatorname{Out}(\pi) \doteq \operatorname{Aut}(\pi) / \operatorname{Inn}(\pi)$
$\operatorname{Aut}(\pi)=\{$ automorphisms of $\pi\}$
$\operatorname{Inn}(\pi)=\{$ conjugations by elements of $\pi\}$
- $\operatorname{Aut}(\pi)$-action on $\operatorname{Hom}(\pi, G)$
$\Longrightarrow \operatorname{Out}(\pi)$-action on $X(\Sigma)$
$\Longrightarrow \operatorname{Mod}(\Sigma)$-action on $X(\Sigma)$
- Theorem (Goldman, Ann. Math. '97)
$G=S U(2), \operatorname{Mod}(\Sigma)$-action on $X(\Sigma)$ is ergodic.
- (X, \mathcal{B}, m) measure space. A measure preserving G-action is ergodic if each G-invariant subset is either of measure 0 or of full measure.
- Theorem (Goldman, Adv. Math. '84)

There is a $\operatorname{Mod}(\Sigma)$-invariant symplectic structure on $X(\Sigma)$, inducing a $\operatorname{Mod}(\Sigma)$-invariant measure.

- Theorem (Pickrell-Xia, Comment. Math. Helv. '02)
G compact, $\operatorname{Mod}(\Sigma)$-action on each connected component of $X(\Sigma)$ is ergodic.
- Question

What about G non-compact? $G=\operatorname{PSL}(2, \mathbb{R})$.

- Theorem (Goldman, Invent. Math. '88)
$X\left(\Sigma_{g}\right)$ has $4 g-3$ connected components, indexed by the Euler class, two of which are Teichmüller spaces $\mathcal{T}(\Sigma)$ and $\mathcal{T}\left(\Sigma^{o p}\right)$.
- Milnor-Wood Inequality

$$
2-2 g \leqslant e(\rho) \leqslant 2 g-2
$$

-" =" holds \Longleftrightarrow Fuchsian \Longleftrightarrow Teichmüller

- Theorem (Fricke, 1897)
$\operatorname{Mod}(\Sigma)$-action on $\mathcal{T}(\Sigma)$ is properly discontinuous.
- Question

What about the other components?

- Conjecture (Goldman)
$\operatorname{Mod}(\Sigma)$-action on each non-Teichmüller component is ergodic.
- Question

What is known?

- Answers
(Marché-Wolff, '13) True for Σ_{2}.
(Souto, '14) True for Euler class 0 component for any Σ_{g}.
- Theorem (Marché-Wolff, '13)

Bowditch's Conjecture \Longleftrightarrow Goldman's Conjecture

- Conjecture (Bowditch, Proc. London Math. Soc. '98)

Every non-Fuchsian representation sends some simple loop to a non-hyperbolic element of $\operatorname{PSL}(2, \mathbb{R})$.

- Classification of $A \in P S L(2, \mathbb{R})$

$$
\begin{aligned}
\text { elliptic } & \Longleftrightarrow|t r A|<2 \\
\text { parabolic } & \Longleftrightarrow|t r A|=2 \\
\text { hyperbolic } & \Longleftrightarrow|t r A|>2
\end{aligned}
$$

- Remark

Bowditch's Conjecture is originally for type-preserving representations of punctured surface groups.

- Σ smooth oriented punctured surface, $\chi(\Sigma)<0$
- Example

- Type-preserving representation
$\rho: \pi \rightarrow P S L(2, \mathbb{R})$ sending each peripheral element to a parabolic element

- Geometrically,

$$
\text { punctures } \longmapsto \text { cusps }
$$

- Conjecture (Bowditch, Proc. London Math. Soc. '98)

Every non-Fuchsian type-preserving $\rho: \pi \rightarrow \operatorname{PSL}(2, \mathbb{R})$ sends some non-peripheral simple loop to a non-hyperbolic element.

- True (trivially) for $\Sigma_{0,3}$ and $\Sigma_{1,1}$.
- Main Results (Y. 2014)

Theorem 1 There are uncountably many type-preserving $\rho: \pi_{1}\left(\Sigma_{0,4}\right) \rightarrow \operatorname{PSL}(2, \mathbb{R})$ with $e(\rho)= \pm 1$ sending each non-peripheral simple loop to a hyperbolic element.

Theorem 2 Every type-preserving $\rho: \pi_{1}\left(\Sigma_{0,4}\right) \rightarrow \operatorname{PSL}(2, \mathbb{R})$ with $e(\rho)=0$ sends some non-peripheral simple loop to a non-hyperbolic element.

Theorem $3 \operatorname{Mod}\left(\Sigma_{0,4}\right)$-action on each non-Teichmüller component of $X\left(\Sigma_{0,4}\right)$ is ergodic.

- Lengths coordinate
\mathcal{T} ideal triangulation of Σ, E edges, T triangles

Theorem (Kashaev, Math. Res. Lett. '05)

$$
(\lambda, \epsilon) \in \mathbb{R}_{>0}^{E} \times\{ \pm 1\}^{T} \Longrightarrow \rho: \pi \rightarrow \operatorname{PSL}(2, \mathbb{R})
$$

with

$$
e(\rho)=\frac{1}{2} \sum_{t \in T} \epsilon(t)
$$

- Remark

When all $\epsilon(t)=1$, Penner's lengths coordinate for the decorated Teichmüller space.

- Trace formula

$$
M=\left[\begin{array}{rr}
\lambda_{1} & \epsilon \lambda_{3} \\
0 & \lambda_{2}
\end{array}\right]
$$

$$
M=\left[\begin{array}{rr}
\lambda_{2} & 0 \\
\epsilon \lambda_{3} & \lambda_{1}
\end{array}\right]
$$

Theorem (Kashaev, Math. Res. Lett. '05)

$$
|\operatorname{tr} \rho(\gamma)|=\left|\frac{\operatorname{tr} M_{1} \cdots M_{n}}{\lambda_{1} \cdots \lambda_{n}}\right|
$$

- Tetrahedral triangulations

- Distinguished simple loops

- Traces of distinguished loops

For $(\lambda, \epsilon)=(a, b, c, d, e, f,-1,1,1,1)$, let

$$
x=a b, \quad y=c d \quad z=e f .
$$

Then $e(\rho)=1$, and

$$
\begin{aligned}
& |\operatorname{tr} \rho(X)|=\left|\frac{y^{2}+z^{2}-x^{2}}{y z}\right| \\
& |\operatorname{tr} \rho(Y)|=\left|\frac{x^{2}+z^{2}-y^{2}}{x z}\right| \\
& |\operatorname{tr} \rho(Z)|=\left|\frac{x^{2}+y^{2}-z^{2}}{x y}\right| .
\end{aligned}
$$

- Cosine Law of Euclidean triangles.
- For (x, y, z) satisfying one of

$$
\begin{aligned}
& x>y+z \\
& y>x+z \\
& z>x+y
\end{aligned} \quad \text { i.e., } \quad(x, y, z) \in \Delta
$$

one has $|\operatorname{tr} \rho(X)|>2,|\operatorname{tr} \rho(Y)|>2,|\operatorname{tr} \rho(Z)|>2$.

- Distinguished simple loops are hyperbolic.
- What about other simple loops?

Every simple loop is distinguished in some tetrahedral triangulation.

- Simultaneous diagonal switches

- Change of distinguished loops

- Change of lengths

If $\lambda^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$, and

$$
x^{\prime}=a^{\prime} b^{\prime}, \quad y^{\prime}=c^{\prime} d^{\prime}, \quad z^{\prime}=e^{\prime} f^{\prime}
$$

then $x^{\prime}=x, y^{\prime}=y$ and

$$
z^{\prime}=\left|\frac{x^{2}-y^{2}}{z}\right|
$$

- Inequalities are preserved

$$
(x, y, z) \in \leadsto\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \Perp
$$

- Relationship with Farey diagram

- Any two tetrahedral triangulations are related by simultaneous diagonal switches.
- All simple loops are hyperbolic, and ρ is non-Fuchshian.
- Counterexamples form full measured subset of

- $\operatorname{Mod}\left(\Sigma_{0,4}\right) \cong F_{2}$ generated by Dehn twists D_{X} and D_{Y}.
- Dehn twists and simultaneous diagonal switches

- $\operatorname{Mod}\left(\Sigma_{0,4}\right)$-action on \triangle

$$
\begin{aligned}
& D_{X}:(x, y, z) \mapsto\left(x,\left|\frac{x^{2}-z^{2}}{y}\right|,\left|\frac{\left(\frac{x^{2}-z^{2}}{y}\right)^{2}-x^{2}}{z}\right|\right) \\
& D_{Y}:(x, y, z) \mapsto\left(\left|\frac{y^{2}-\left(\frac{x^{2}-y^{2}}{z}\right)^{2}}{x}\right|, y,\left|\frac{x^{2}-y^{2}}{z}\right|\right)
\end{aligned}
$$

- Recall

$$
F_{2} \cong \Gamma(2) / \pm I,
$$

where

$$
\Gamma(2)=\left\{A \in S L(2, \mathbb{Z}) \left\lvert\, A \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod 2)\right.\right\} .
$$

- Group homomorphism

$$
\phi: \Gamma(2) \rightarrow \operatorname{Mod}\left(\Sigma_{0,4}\right)
$$

given by

$$
\left(\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right) \mapsto D_{X} \quad \text { and } \quad\left(\begin{array}{cc}
1 & 2 \\
0 & 1
\end{array}\right) \mapsto D_{Y} .
$$

- Consider ϕ-equivariant two-fold covering

$$
\begin{aligned}
\psi: \mathbb{R}^{2} & \rightarrow \\
\binom{s}{t} & =\left(\begin{array}{c}
|\sinh s| \\
|\sinh t| \\
|\sinh (s+t)|
\end{array}\right) .
\end{aligned}
$$

- Moore's Theorem
$\Gamma(2)$-action on \mathbb{R}^{2} is ergodic.
- $\operatorname{Mod}\left(\Sigma_{0,4}\right)$-action on \quad is ergodic.

- Traces of distinguished loops

Let $(\lambda, \epsilon)=(a, b, c, d, e, f,-1,-1,1,1)$, and

$$
x=a b, \quad y=c d \quad z=e f .
$$

Then $e(\rho)=0$, and

$$
\begin{aligned}
|\operatorname{tr} \rho(X)| & =\left|\frac{x^{2}+y^{2}+z^{2}-2 x y-2 x z}{y z}\right| \\
|\operatorname{tr} \rho(Y)| & =\left|\frac{x^{2}+y^{2}+z^{2}+2 y z-2 x y}{x z}\right| \\
|\operatorname{tr} \rho(Z)| & =\left|\frac{x^{2}+y^{2}+z^{2}+2 y z-2 x z}{x y}\right| .
\end{aligned}
$$

- Change of lengths

If $\lambda^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$ and

$$
x^{\prime}=a^{\prime} b^{\prime}, \quad y^{\prime}=c^{\prime} d^{\prime}, \quad z^{\prime}=e^{\prime} f^{\prime}
$$

then

$$
\begin{aligned}
& x^{\prime}=\frac{(y+z)^{2}}{x}, \\
& y^{\prime}=\frac{(x-z)^{2}}{y}, \\
& z^{\prime}=\frac{(x-y)^{2}}{z} .
\end{aligned}
$$

- If (x, y, z) satisfy one of

$$
\begin{aligned}
& \sqrt{x} \leqslant \sqrt{y}+\sqrt{z} \\
& \sqrt{y} \leqslant \sqrt{x}+\sqrt{z} \\
& \sqrt{z} \leqslant \sqrt{x}+\sqrt{y}
\end{aligned} \quad \text { i.e., } \quad(x, y, z) \in
$$

then $|\operatorname{tr} \rho(X)| \leqslant 2$.

- Trace reduction algorithm

Doing simultaneous diagonal switches along the longest pair of opposite edges.

- Trace reduction algorithm stops in finitely many steps.

— THANK YOU -

