Hyerbolic Cone Metrics on 3-manifolds with Boundary

Tian Yang

Joint with Feng Luo
Rutgers University
Joint Mathematics Meetings
January 11, 2013, San Diego

- Preliminaries

M 3-manifold, $\partial M \neq \emptyset$ and $\chi(\partial M)<0$
\mathcal{T} ideal triangulation of M

- Example

- Hyperbolic cone metric
a metric on M that restricts to hyperideal tetrahedra to the tetrahedra in \mathcal{T}

$\mathcal{L}(M, \mathcal{T})$ moduli space of hyperbolic cone metrics $\mathcal{L}(M, \mathcal{T}) \subset \mathbb{R}_{>0}^{E}$ parametrized by the edge lengths.
- Cone angles

sum of dihedral angles
- Combinatorial curvature
$K: \mathcal{L}(M, \mathcal{T}) \rightarrow \mathbb{R}^{E}$ defined by

$$
K(I)(e)=2 \pi-\text { cone angle at } e
$$

- Questions

1. (Global Rigidity) Do combinatorial curvatures determine the hyperbolic cone metrics?
I.e., is $K: \mathcal{L}(M, \mathcal{T}) \rightarrow \mathbb{R}^{E}$ injective?
2. Describe the space $\operatorname{Im}(K)$ of combinatorial curvatures.
$0 \in \operatorname{Im}(K) \Longrightarrow$ existence of hyperbolic metric

- Main results

1. Theorem 1 (Luo-Y.)

The map $K: \mathcal{L}(M, \mathcal{T}) \rightarrow \mathbb{R}^{E}$ is a smooth embedding. In particular, hyperbolic cone manifolds are globally rigid.
2. Theorem 2 (Luo-Y.) $\operatorname{Im}(K) \cap(\pi, 2 \pi)^{E}$ is a concrete convex open polytope in \mathbb{R}^{E}.

- Similar results hold for M with torus or mixed boundary.
- Related results

Hodgson-Kerckhoff, Weiss

Mazzeo-Montcouquiol, Montcouquiol

Andreev, Hodgson-Rivin, Rivin, Bao-Bonahon

- Variational principle

1. If $X \subset \mathbb{R}^{n}$ open convex and $f: X \rightarrow \mathbb{R}$ smooth strictly convex, then $\nabla f: X \rightarrow \mathbb{R}^{n}$ is injective.
2. If the Hessian $H(f)$ positive definite for all $x \in X$, then ∇f is a smooth embedding.

- Schlaefli formula

$$
\frac{\partial V o l}{\partial \theta_{i}}=-\frac{I_{i}}{2}
$$

- Thoerem (Schlenker)

Vol is smooth strictly concave in θ_{i}.

- Legendre transformation

$$
W\left(I_{1}, \ldots, I_{6}\right)=2 \mathrm{Vol}+\sum_{i=1}^{6} \theta_{i} I_{i}
$$

Up to a constant,

$$
W(I)=\int^{I} \sum_{i} \theta_{i} d l_{i}
$$

- Proposition

W is smooth strictly convex, and

$$
\frac{\partial W}{\partial I_{i}}=\theta_{i}
$$

- Co-volume function

Consider $W: \mathcal{L}(M, \mathcal{T}) \rightarrow \mathbb{R}$ defined by

$$
W(I)=\sum_{\sigma \in \mathcal{T}} W\left(I_{\sigma}\right)-2 \pi \sum_{e \in E} I_{e} .
$$

Then W is smooth strictly convex, and

$$
\nabla W=-K
$$

- $\mathcal{L}(M, \mathcal{T})$ is not convex !
- Theorem (Luo)

The map $K: \mathcal{L}(M, \mathcal{T}) \rightarrow \mathbb{R}^{E}$ is a local embedding.

- Key Lemma
W can be extended to a C^{1}-smooth convex function

$$
\widetilde{W}: \mathbb{R}_{>0}^{E} \rightarrow \mathbb{R}
$$

- Proof of Thm 1

Suppose existed $I_{1} \neq I_{2} \in \mathcal{L}(M, \mathcal{T})$ with $K\left(I_{1}\right)=K\left(I_{2}\right)$.
Let $L \subset \mathbb{R}_{>0}^{E}$ be the line segment in jointing l_{i}.
$K\left(I_{1}\right)=\left.K\left(I_{2}\right) \Longrightarrow \widetilde{W}\right|_{L}$ is affine.
$\left.\widetilde{W}\right|_{\mathcal{L}(M, \mathcal{T})}=\left.W \Longrightarrow \widetilde{W}\right|_{L}$ is strictly convex near I_{i}.

- The map $K: \mathcal{L}(M, \mathcal{T}) \rightarrow \mathbb{R}^{E}$ is injective.
- Degeneration of hyperideal tetrahedra
\mathcal{L} space of hyperideal tetrahedra
$\mathcal{L} \subset \mathbb{R}_{>0}^{6}$ parametrized by the edge lengths.
- Proposition

D_{3}
- Degeneration of hyperideal tetrahedra

flat tetrahedra
- Degeneration of hyperideal tetrahedra

dihedral angles
- Extended dihedral angles

$$
\widetilde{\theta}_{i}: \mathbb{R}_{>0}^{6} \rightarrow \mathbb{R}
$$

(0,0, ד , $0,0, \Pi$ T

- Lemma
$\widetilde{\theta}_{i}: \mathbb{R}_{>0}^{6} \rightarrow \mathbb{R}$ is continuous.
- Proposition

The function $\widetilde{W}: \mathbb{R}_{>0}^{6} \rightarrow \mathbb{R}$ defined by

$$
\widetilde{W}(I)=\int^{\prime} \sum_{i} \widetilde{\theta}_{i} d l_{i}
$$

is C^{1}-smooth convex, and $\left.\widetilde{W}\right|_{\mathcal{L}}=W$.

- Extended co-volume function

The function $\widetilde{W}: \mathbb{R}_{>0}^{E} \rightarrow \mathbb{R}$ defined by

$$
\widetilde{W}(I)=\sum_{\sigma \in \mathcal{T}} \widetilde{W}\left(I_{\sigma}\right)-2 \pi \sum_{e \in E} I_{e}
$$

is C^{1}-smooth convex, and $\left.\widetilde{W}\right|_{\mathcal{L}(M, \mathcal{T})}=W$.

- Other results

Relationship with angle structures
an assignment of dihedral angles to (M, \mathcal{T}) so that

1. each tetrahedron is hyperideal,
2. the cone angle at each edge is 2π.

- Theorem (Casson, Lackenby, Rivin)
"maximum volumed angle structure \Longrightarrow hyperbolic metric"

$$
\text { maximum volume }=\text { hyperbolic volume. }
$$

- Other results

Maximum volumed angle structure doesn't always exist!

- Conjecture (Casson)

For a triangulated hyperbolic 3-manifold, supremum of volumes \leqslant hyperbolic volume.

- Other results
semi-angle structures
an assignment of dihedral angles to (M, \mathcal{T}) so that

1. each tetrahedron is hyperideal or flat,
2. the cone angle at each edge is 2π.

- Theorem 3 (Luo -Y.)

The maximum volumed semi-angle structure is the extended dihedral angles of some $I \in \mathbb{R}_{>0}^{E}$.
"maximum volumed semi-angle structure \Longrightarrow extended hyperbolic metric"

THANK YOU！

$$
\text { ムロ〉4占 } \downarrow \text { 引 }
$$

