Hyerbolic Cone Metrics on 3-manifolds with Boundary

Tian Yang

Joint with Feng Luo Rutgers University

Joint Mathematics Meetings January 11, 2013, San Diego

Preliminaries

M 3-manifold, $\partial M \neq \emptyset$ and $\chi(\partial M) < 0$

 \mathcal{T} ideal triangulation of M

Example

Hyperbolic cone metric

a metric on M that restricts to hyperideal tetrahedra to the tetrahedra in $\ensuremath{\mathcal{T}}$

 $\mathcal{L}(M, \mathcal{T})$ moduli space of hyperbolic cone metrics $\mathcal{L}(M, \mathcal{T}) \subset \mathbb{R}^{E}_{>0}$ parametrized by the edge lengths.

sum of dihedral angles

Combinatorial curvature

 $K: \mathcal{L}(M, \mathcal{T}) \to \mathbb{R}^{E}$ defined by

$$K(I)(e) = 2\pi - \text{cone angle at } e$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Questions

1. (Global Rigidity) Do combinatorial curvatures determine the hyperbolic cone metrics?

I.e., is $K : \mathcal{L}(M, \mathcal{T}) \to \mathbb{R}^E$ injective?

2. Describe the space Im(K) of combinatorial curvatures.

 $0 \in Im(K) \Longrightarrow$ existence of hyperbolic metric

Main results

- Theorem 1 (Luo -Y.) The map K : L(M, T) → ℝ^E is a smooth embedding. In particular, hyperbolic cone manifolds are globally rigid.
- 2. Theorem 2 (Luo -Y.) $Im(K) \cap (\pi, 2\pi)^E$ is a concrete convex open polytope in \mathbb{R}^E .

Similar results hold for M with torus or mixed boundary.

Related results

Hodgson-Kerckhoff, Weiss

Mazzeo-Montcouquiol, Montcouquiol

Andreev, Hodgson-Rivin, Rivin, Bao-Bonahon

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Variational principle

- 1. If $X \subset \mathbb{R}^n$ open convex and $f : X \to \mathbb{R}$ smooth strictly convex, then $\nabla f : X \to \mathbb{R}^n$ is injective.
- If the Hessian H(f) positive definite for all x ∈ X, then ∇f is a smooth embedding.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Schlaefli formula

$$\frac{\partial Vol}{\partial \theta_i} = -\frac{l_i}{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thoerem (Schlenker)

Vol is smooth strictly concave in θ_i .

Legendre transformation

$$W(l_1,\ldots,l_6)=2Vol+\sum_{i=1}^6\theta_il_i$$

Up to a constant,

$$W(I) = \int^{I} \sum_{i} \theta_{i} dI_{i}.$$

Proposition

 \boldsymbol{W} is smooth strictly convex, and

$$\frac{\partial W}{\partial I_i} = \theta_i.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Co-volume function

Consider $W : \mathcal{L}(M, \mathcal{T}) \to \mathbb{R}$ defined by

$$W(l) = \sum_{\sigma \in \mathcal{T}} W(l_{\sigma}) - 2\pi \sum_{e \in E} l_e.$$

Then W is smooth strictly convex, and

 $\nabla W = -K.$

- $\mathcal{L}(M, \mathcal{T})$ is not convex !
- Theorem (Luo)

The map $K : \mathcal{L}(M, \mathcal{T}) \to \mathbb{R}^{E}$ is a local embedding.

Key Lemma

W can be extended to a C^1 -smooth convex function

$$\widetilde{W}: \mathbb{R}_{>0}^{\mathcal{E}} \to \mathbb{R}.$$

Proof of Thm 1

Suppose existed $l_1 \neq l_2 \in \mathcal{L}(M, \mathcal{T})$ with $K(l_1) = K(l_2)$. Let $L \subset \mathbb{R}_{>0}^E$ be the line segment in jointing l_i . $K(l_1) = K(l_2) \implies \widetilde{W}|_L$ is affine. $\widetilde{W}|_{\mathcal{L}(M,\mathcal{T})} = W \implies \widetilde{W}|_L$ is strictly convex near l_i .

• The map $K : \mathcal{L}(M, \mathcal{T}) \to \mathbb{R}^E$ is injective.

Degeneration of hyperideal tetrahedra

 \mathcal{L} space of hyperideal tetrahedra

 $\mathcal{L} \subset \mathbb{R}^6_{>0}$ parametrized by the edge lengths.

Proposition

Degeneration of hyperideal tetrahedra

flat tetrahedra

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Degeneration of hyperideal tetrahedra

dihedral angles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

(0,0,TT,0,0,TT)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

$$\widetilde{\theta}_i : \mathbb{R}^6_{>0} \to \mathbb{R}$$
 is continuous.

The function $\widetilde{W}: \mathbb{R}^6_{>0} \to \mathbb{R}$ defined by

$$\widetilde{W}(l) = \int^{l} \sum_{i} \widetilde{\theta}_{i} dl_{i}$$

is C^1 -smooth convex, and $\widetilde{W}|_{\mathcal{L}} = W$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Extended co-volume function

The function $\widetilde{W}: \mathbb{R}_{>0}^{\mathcal{E}} \to \mathbb{R}$ defined by

$$\widetilde{W}(l) = \sum_{\sigma \in \mathcal{T}} \widetilde{W}(l_{\sigma}) - 2\pi \sum_{e \in E} l_e$$

◆□ > < @ > < E > < E > E のQ @

is C^1 -smooth convex, and $\widetilde{W}|_{\mathcal{L}(M,\mathcal{T})} = W$.

Other results

Relationship with angle structures

an assignment of dihedral angles to (M, \mathcal{T}) so that

1. each tetrahedron is hyperideal,

- 2. the cone angle at each edge is 2π .
- Theorem (Casson, Lackenby, Rivin)

"maximum volumed angle structure \implies hyperbolic metric"

maximum volume = hyperbolic volume.

Other results

Maximum volumed angle structure doesn't always exist!

Conjecture (Casson)

For a triangulated hyperbolic 3-manifold,

supremum of volumes \leq hyperbolic volume.

Other results

semi-angle structures

an assignment of dihedral angles to (M, \mathcal{T}) so that

- 1. each tetrahedron is hyperideal or flat,
- 2. the cone angle at each edge is 2π .

► Theorem 3 (Luo -Y.)

The maximum volumed semi-angle structure is the extended dihedral angles of some $I \in \mathbb{R}_{>0}^{E}$.

"maximum volumed semi-angle structure \implies extended hyperbolic metric"

THANK YOU !