The Skein Algebra of Arcs and Links and the Decorated Teichmüller Space

The Skein Algebra $\mathcal{AS}_h(\Sigma)$ of Arcs and Links

Let Σ be an oriented punctured surface with V the set of punctures. • A generalized framed link in $\Sigma \times [0, 1]$,

Kauffman bracket skein relation:

• Puncture-skein relation:

• Framing relation:

• Puncture relation:

 $() = -q^2 - q^{-2}.$

 $(\bullet) = q + q^{-1}.$

When $V = \emptyset$, $\mathcal{AS}_h(\Sigma)$ coincides with the Kauffman bracket skein algebra $\mathcal{S}_h(\Sigma)$ defined by Przytycki and Turaev.

- Multiplication \cdot on $\mathcal{AS}_h(\Sigma)$:
- $\forall \alpha, \beta \in \mathcal{L}, \alpha \cdot \beta = \text{stacking } \alpha \text{ above } \beta \text{ along the direction of [0, 1];}$
- $\forall v \in V \text{ and } \forall \alpha \in \mathcal{L}, v \cdot \alpha = \alpha \cdot v \text{ and } v \cdot v^{-1} = v^{-1} \cdot v = 1.$

$\mathcal{AS}_0(\Sigma)$ and the Generalized Goldman Bracket

- When h = 0, the multiplication \cdot is commutative. $\mathcal{AS}_0(\Sigma)$ can be considered as generated by the projections of the generalized framed links, i.e., immersed loops and arcs on the Σ .
- Generalized Goldman bracket $\{,\}$ on $\mathcal{AS}_0(\Sigma)$:
- $\forall v \in V \text{ and } \forall \alpha \in \mathcal{L},$

•
$$\forall \alpha, \beta \in \mathcal{L},$$

 $\{\boldsymbol{v}^{\pm 1}, \alpha\} = \mathbf{0},$

$$\{\alpha,\beta\} = \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} (() - ()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v \in \alpha \cap A} \frac{1}{v} (()) + \frac{1}{4} \sum_{v$$

Department of Mathematics, Rutgers University – New Brunswick

V × [0, 1]

Deformation Quantization

- (1) $(\mathcal{AS}_h(\Sigma), \cdot)$ is a well-defined associative (2) $(\mathcal{AS}_0(\Sigma), \cdot, \{,\})$ is a well-defined Poisso
- (3) $(\mathcal{AS}_h(\Sigma), \cdot)$ is a deformation quantization

$$\{\alpha,\beta\} = \left(\frac{\alpha \cdot \beta - \beta \cdot \alpha}{h}\right)$$

Corresponding results for closed surfaces Bullock–Frohman–Kania-Bartoszyńska, C

Decorated Teichmüller Space and its

- (Penner) The decorated Teichmüller space classes of complete hyperbolic metrics on associated to the punctures. The arc leng horocycles.
- (Mondello) The Weil-Petersson Poisson b

 $\Omega_{WP} = \frac{1}{4} \sum \frac{\theta'_v}{r(r)}$ *v*∈*V e*,*e*′∈*E* $e \cap e' = v$

where E is the set of edges of an ideal tria respectively are the angles between the e

Relationship between $\mathcal{AS}_0(\Sigma)$ and \mathcal{T}^d

For an immersed loop or arc α on a decor the length of the unique geodesic homoto

$$\lambda(\alpha) = \begin{cases} 2\cosh\frac{l(\alpha)}{2} \\ e^{\frac{l(\alpha)}{2}} \end{cases}$$

Define a map $\Phi : \mathcal{AS}_0(\Sigma) \to C^\infty(\mathcal{T}^d(\Sigma))$ or $\alpha \mapsto (-1)^{c(\alpha)}\lambda(\alpha)$ $V \mapsto r(V)$

where r(v) is the length of the horocycle a is the number of curls that α contains.

Theorem 2 Φ is a well-defined Poisson alg the generalized Goldman bracket {, } on Poisson structure Ω_{WP} on $\mathcal{T}^{d}(\Sigma)$.

Compare with Bullock and Przytycki–Siko

Corollary (Generalized Wolpert's Cosine |

$$\Omega_{WP}(I(\alpha), I(\beta)) = \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma} \cos \theta_p - \frac{1}{2} \sum_{p \in \alpha$$

► Conjecture Φ is an injection.

Julien Roger and Tian Yang

	Geodesic Lengths
ive $\mathbb{C}[[h]]$ -algebra, son algebra, tion of $(\mathcal{AS}_0(\Sigma), \cdot, \{,\})$, i.e.,	(1) For two intersection
(mod h), $\forall \alpha, \beta \in \mathcal{L}.$	cost
es were first proved by Goldman and Przytycki.	cosh
Guiuman and Fizytycki.	(2) For two intersecti
Weil-Petersson Poisson Structure	
Lee $\mathcal{T}^{d}(\Sigma)$ is the space of isotopy on Σ with finite area and horocycles on the stances between	
bi-vector field on $\mathcal{T}^d(\Sigma)$:	This is accepticly
$\frac{\partial_{v}^{\prime}-\theta_{v}}{r(v)}\frac{\partial}{\partial l(e)}\wedge\frac{\partial}{\partial l(e^{\prime})}$	This is essentially (3) For a geodesic a
riangulation of Σ and θ_v and θ'_v e and e' at v.	
(Σ)	(4) For two geodesic
orated hyperbolic surface Σ , let $I(\alpha)$ be topic to α , and let	
$\frac{\alpha}{2}$ if α is a loop, if α is an arc.	(5) For a self-interse
on generators by	
	/(cosh_
e associated to the puncture v , and $c(\alpha)$	(6) For a self-interse
algebra homomorphism with respect to $\mathcal{AS}_0(\Sigma)$ and the Weil-Petersson	
ora for closed surfaces.	
$+ \frac{1}{4} \sum_{\boldsymbol{v} \in \alpha \cap \beta \cap \boldsymbol{V}} \frac{\theta_{\boldsymbol{v}}' - \theta_{\boldsymbol{v}}}{\boldsymbol{r}(\boldsymbol{v})} \forall \alpha, \beta \in \mathcal{L}.$	(7) For a geodesic a

dentities

cting closed geodesics α and β (Trace Identity),

$$\alpha \overset{\Theta}{\longrightarrow}_{\beta} \qquad \overset{\Theta}{\longrightarrow}_{\mathbf{X}} \qquad \overset{\Theta}{\longrightarrow}_{\mathbf{Y}}$$

$$h\frac{l(x)}{2} + \cosh\frac{l(y)}{2} = 2\cosh\frac{l(\alpha)}{2}\cosh\frac{l(\beta)}{2},$$

$$h\frac{l(x)}{2} - \cosh\frac{l(y)}{2} = 2\sinh\frac{l(\alpha)}{2}\sinh\frac{l(\beta)}{2}\cosh\theta.$$

sting geodesic arcs α and β ,

y Penner's Ptolemy Relation. arc α intersecting a closed geodesic β ,

$$e^{\frac{l(x)}{2}} + e^{\frac{l(y)}{2}} = 2e^{\frac{l(\alpha)}{2}} \cosh \frac{l(\beta)}{2},$$

$$e^{\frac{l(x)}{2}} - e^{\frac{l(y)}{2}} = 2e^{\frac{l(\alpha)}{2}} \sinh \frac{l(\beta)}{2} \cos \theta.$$

ic arcs α and β intersecting at a puncture v,

$$e^{\frac{l(x)}{2}} + e^{\frac{l(y)}{2}} = r(v) e^{\frac{l(\alpha)}{2}} e^{\frac{l(\beta)}{2}},$$

$$e^{\frac{l(x)}{2}} - e^{\frac{l(y)}{2}} = (\theta'_v - \theta_v) e^{\frac{l(\alpha)}{2}} e^{\frac{l(\beta)}{2}}$$

ecting closed geodesic α ,

$$S_{\alpha}$$
 x y y

$$\frac{(\alpha)}{2} = 2\cosh\frac{l(x)}{2}\cosh\frac{l(y)}{2} + (-1)^{c(z)}\cosh\frac{l(z)}{2}.$$

ecting geodesic arc α ,

$$\int_{\alpha} \int_{y} \int_{z} \int_{z} z$$

$$e^{\frac{I(\alpha)}{2}} = 2\cosh\frac{I(x)}{2}e^{\frac{I(y)}{2}} + (-1)^{c(z)}e^{\frac{I(z)}{2}}$$

arc α self-intersecting at a puncture v,

$$e^{\frac{l(\alpha)}{2}} = \frac{2}{r(v)}(\cosh\frac{l(x)}{2} + \cosh\frac{l(y)}{2}).$$