The Skein Algebra of Arcs and Links and the Decorated Teichmüller Space

The Skein Algebra $\mathcal{A} \mathcal{S}_{h}(\Sigma)$ of Arcs and Links

-Let Σ be an oriented punctured surface with V the set of punctures A generalized framed link in $\Sigma \times[0,1]$,

Definition Let $\mathbb{C}[[h]]$ be the ring of power series in h and let $q=e^{\frac{h}{4}} \in \mathbb{C}[[h]]$. The skein algebra of arcs and links $\mathcal{A} \mathcal{S}_{h}(\Sigma)$ is the $\mathbb{C}[[h]]$-module generated by \mathcal{L}, the generalized framed links in $\Sigma \times[0,1]$ and $V^{ \pm}$, the punctures of Σ and their
rmal inverses, modulo the following relations:
Kauffman bracket skein relation:

$$
Q=q 00+q^{-1}
$$

- Puncture-skein relation

$$
\triangle=\frac{1}{v}\left(q^{\frac{1}{2}} \bigcirc+q^{-\frac{1}{2}} \bigcirc\right) .
$$

- Framing relation:

$$
O=-q^{2}-q^{-2} .
$$

- Puncture relation

$$
\Theta=q+q^{-1} .
$$

When $V=\emptyset, \mathcal{A S}_{h}(\Sigma)$ coincides with the Kauffman bracket skein algebra $\mathcal{S}_{h}(\Sigma)$ defined by Przytycki and Turaev.
Multiplication - on $\mathcal{A S}_{h}(\Sigma)$:
$-\forall \alpha, \beta \in \mathcal{L}, \alpha \cdot \beta=\operatorname{stacking} \alpha$ above β along the direction of $[0,1]$;

- $\forall v \in V$ and $\forall \alpha \in \mathcal{L}, \boldsymbol{v} \cdot \alpha=\alpha \cdot v$ and $v \cdot v^{-1}=v^{-1} \cdot \boldsymbol{v}=1$.

$A \mathcal{S}_{0}(\Sigma)$ and the Generalized Goldman Bracket

When $h=0$, the multiplication . is commutative.
$\mathcal{A} \mathcal{S}_{0}(\Sigma)$ can be considered as generated by the projections of the generalized framed links, i.e., immersed loops and arcs on the Σ.
Generalized Goldman bracket $\{$,$\} on \mathcal{A S} 0(\Sigma)$:

- $\forall v \in V$ and $\forall \alpha \in \mathcal{L}$,

$$
\left\{v^{ \pm 1}, \alpha\right\}=0,
$$

- $\forall \alpha, \beta \in \mathcal{L}$,

$$
\{\alpha, \beta\}=\frac{1}{2} \sum_{p \in \alpha \cap \beta \cap \Sigma}(O-\Omega)+\frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{1}{v}(\bigcirc-\bigcirc) .
$$

Deformation Quantization

-Theorem 1
(1) $\left(\mathcal{A S}_{h}(\Sigma), \cdot\right)$ is a well-defined associative $\mathbb{C}[[h]]$-algebra,
(2) $\left(\mathcal{A S}_{0}(\Sigma), \cdot,\{\},\right)$ is a well-defined Poisson algebra,
(3) $\left(\mathcal{A S}_{h}(\Sigma), \cdot\right)$ is a deformation quantization of $\left(\mathcal{A S}_{0}(\Sigma), \cdot,\{\},\right)$, i.e.,

$$
\{\alpha, \beta\}=\left(\frac{\alpha \cdot \beta-\beta \cdot \alpha}{h}\right) \quad(\bmod h), \quad \forall \alpha, \beta \in \mathcal{L} .
$$

Corresponding results for closed surfaces were first proved by Bullock-Frohman-Kania-Bartoszyńska, Goldman and Przytycki.

Decorated Teichmüller Space and its Weil-Petersson Poisson Structure
(Penner) The decorated Teichmüller space $\mathcal{T}^{d}(\Sigma)$ is the space of isotopy classes of complete hyperbolic metrics on Σ with finite area and horocycles associated to the punctures. The arc lengths are defined as distances between horocycles.
(Mondello) The Weil-Petersson Poisson bi-vector field on $\mathcal{T}^{d}(\Sigma)$:

$$
\Omega_{W P}=\frac{1}{4} \sum_{\substack{v \in V}} \sum_{\substack{e, e^{\prime} \in E \\ e n e^{\prime}=v}} \frac{\theta_{v}^{\prime}-\theta_{v}}{r(v)} \frac{\partial}{\partial I(e)} \wedge \frac{\partial}{\partial I\left(e^{\prime}\right)}
$$

where E is the set of edges of an ideal triangulation of Σ and θ_{v} and θ_{v}^{\prime} respectively are the angles between the e and e^{\prime} at v.

Relationship between $\mathcal{A} \mathcal{S}_{0}(\Sigma)$ and $\mathcal{T}^{d}(\Sigma)$
For an immersed loop or arc α on a decorated hyperbolic surface Σ, let $/(\alpha)$ be the length of the unique geodesic homotopic to α, and let

$$
\lambda(\alpha)= \begin{cases}2 \cosh \frac{I(\alpha)}{2} & \text { if } \alpha \text { is a loop, } \\ e^{\frac{I(L)}{2}} & \text { if } \alpha \text { is an arc. }\end{cases}
$$

Define a map $\Phi: \mathcal{A} \mathcal{S}_{0}(\Sigma) \rightarrow C^{\infty}\left(\mathcal{T}^{d}(\Sigma)\right)$ on generators by

$$
\alpha \mapsto(-1)^{c(\alpha)} \lambda(\alpha)
$$

$$
v \mapsto r(v)
$$

where $r(v)$ is the length of the horocycle associated to the puncture v, and $c(\alpha)$ is the number of curls that α contains.
Theorem 2Φ is a well-defined Poisson algebra homomorphism with respect to the generalized Goldman bracket $\{$,$\} on \mathcal{A S}_{0}(\Sigma)$ and the Weil-Petersson Poisson structure $\Omega_{w p}$ on $\mathcal{T}^{d}(\Sigma)$
Compare with Bullock and Przytycki-Sikora for closed surfaces.
Corollary (Generalized Wolpert's Cosine Formula)

$$
\Omega_{W P}(I(\alpha), I(\beta))=\frac{1}{2} \sum_{p \in a \cap \beta \cap \Sigma} \cos \theta_{p}+\frac{1}{4} \sum_{v \in \alpha \cap \beta \cap V} \frac{\theta_{v}^{\prime}-\theta_{v}}{r(v)} \quad \forall \alpha, \beta \in \mathcal{L} .
$$

Conjecture Φ is an injection.

Geodesic Lengths Identities

(1) For two intersecting closed geodesics α and β (Trace Identity),

$$
\begin{aligned}
& \cosh \frac{l(x)}{2}+\cosh \frac{l(y)}{2}=2 \cosh \frac{I(\alpha)}{2} \cosh \frac{I(\beta)}{2} \\
& \cosh \frac{l(x)}{2}-\cosh \frac{l(y)}{2}=2 \sinh \frac{I(\alpha)}{2} \sinh \frac{I(\beta)}{2} \cos \theta .
\end{aligned}
$$

(2) For two intersecting geodesic arcs α and β,

$$
\begin{aligned}
& \left.{ }_{\alpha} \chi_{\beta} \quad x\right)\left(\begin{array}{l}
\\
x^{\prime} \\
y^{\prime}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& e^{\frac{I(x)}{2}} e^{\frac{I\left(x^{2}\right)}{2}}-e^{\frac{\frac{I(V)}{2}}{2}} e^{\frac{\|\left(y^{\prime}\right)}{2}}=e^{\frac{I(())}{2}} e^{\frac{I(\theta)}{2}} \cos \theta
\end{aligned}
$$

This is essentially Penner's Ptolemy Relation.
(3) For a geodesic arc α intersecting a closed geodesic β

$$
\begin{aligned}
& e^{\frac{\text { l(x) }}{2}}+e^{\frac{\text { l(v) }}{2}}=2 e^{\frac{I(\alpha)}{2}} \cosh \frac{I(\beta)}{2}, \\
& e^{\frac{\text { I(x) }}{2}}-e^{\frac{l(y)}{2}}=2 e^{\frac{\text { I(})}{2}} \sinh \frac{I(\beta)}{2} \cos \theta \text {. }
\end{aligned}
$$

(4) For two geodesic arcs α and β intersecting at a puncture v

$$
\begin{aligned}
& e^{\frac{I(x)}{2}}+e^{\frac{I(v)}{2}}=r(v) e^{\frac{I(())}{2}} e^{\frac{I(\theta)}{2}}, \\
& e^{\frac{\|(x)}{2}}-e^{\frac{\left(\frac{l v}{2}\right.}{2}}=\left(\theta_{v}^{\prime}-\theta_{v}\right) e^{\frac{\|(v)}{2}} e^{\frac{(\theta(\theta)}{2}}
\end{aligned}
$$

(5) For a self-intersecting closed geodesic α,

$$
\begin{gathered}
\Omega_{\alpha}{ }_{x} \Im_{z} \\
\cosh \frac{I(\alpha)}{2}=2 \cosh \frac{I(x)}{2} \cosh \frac{I(y)}{2}+(-1)^{c(z)} \cosh \frac{I(z)}{2}
\end{gathered}
$$

(6) For a self-intersecting geodesic arc α,

$$
\begin{gathered}
\Omega_{\alpha} \bigcirc_{y}^{x} \Omega_{z} \\
e^{\frac{I(0)}{2}}=2 \cosh \frac{l(x)}{2} e^{\frac{I(v)}{2}}+(-1)^{c(z)} e^{\frac{I(z)}{2}}
\end{gathered}
$$

(7) For a geodesic arc α self-intersecting at a puncture v,

$$
e^{\frac{I(v)}{2}}=\frac{2}{r(v)}\left(\cosh \frac{I(x)}{2}+\cosh \frac{I(y)}{2}\right) .
$$

