QUIZ 9 MATH 251

LAST NAME \qquad FIRST NAME \qquad Row \qquad
On my honor, as an Aggie, I certify that the solution submitted by me on 18th of November 2011 is my own work. I had neither given nor received unauthorized aid on this work.

Signature: \qquad

Due FRIDAY 11/18/2011 at the beginning of class.

- If turned in later than 10 minutes into class, 5 points off. No papers will be accepted after class.
- If you turn it in to my office (Milner 324), place it in my mailbox (Milner 130) or e-mail a PDF-version to me, make sure you do it before 10:45 am, FRIDAY 11/18/2011.
- Your work must be neat, easy to follow.
- You may use notes and textbook, but not the help of anything else.
- BOX YOUR FINAL ANSWERS.

1. Convert the integral $\iiint_{E} z \sqrt{x^{2}+y^{2}} \mathrm{~d} V$ to cylindrical coordinates where E is the solid that lies inside the cylinder $x^{2}+y^{2}=4$, above the cone $z=\sqrt{3 x^{2}+3 y^{2}}$ and below the plane $z=9$. (Attention: You don't need to evaluate the integral, just set up an iterated integral in cylindrical coordinates)
2. Compute $\int_{C} \nabla f \cdot \mathrm{~d} \mathbf{r}$ for $f(x, y, z)=\sin \left(\frac{\pi x y}{4}\right)-z \sin \frac{\pi}{y}$ and C is given by $\mathbf{r}(t)=\left\langle t^{2}, 2 e^{t^{2}-t}, 3+t\right\rangle, 0 \leq t \leq 1$.
3. Find the mass of a solid $E=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq a^{2}, y \geq 0\right\}$ with density $\rho(x, y, z)=2 z e^{\left(x^{2}+y^{2}+z^{2}\right)^{2}}$.
4. Sketch the solid whose volume is given by the integral $\int_{\pi / 2}^{\pi} \int_{0}^{2 \pi} \int_{0}^{4} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi$.
5. Given the line integral

$$
I=\int_{C}\left(x^{12}-x^{2} y+12 \sin x+12\right) \mathrm{d} x+\left(12 \sec y^{3}-y^{12}\right) \mathrm{d} y
$$

where C consists of the line segment from $(0,0)$ to $(2,-2)$, the line segment from $(2,-2)$ to $(2,4)$, and the part of the curve $x=\sqrt{y}$ from $(2,4)$ to $(0,0)$. Use Green's theorem to evaluate the given integral and sketch the curve C indicating the positive direction.
Sketch C here:

