12 Vectors and Geometry of Space

12.1: Three-dimensional Coordinate System

The three-dimensional coordinate system consists of the origin O and the coordinate axes: x-axis, y-axis, z-axis. The coordinate axes determine 3 coordinate planes: the $x y$-plane, the $x z$-plane and $y z$-plane. The coordinate planes divide space into 8 parts, called octants.

Representation of point $P(a, b, c)$ and its projections on the coordinate planes:

EXAMPLE 1. Describe in words the regions of \mathbb{R}^{3} represented by the following equation:
(a) $z=0$
(b) $y=0$
(c) $x=0$

Note that in \mathbb{R}^{2} the graph of the equation involving x and y is a curve. In \mathbb{R}^{3} an equation in x, y, z represents a surface.(It does not mean that we can't graph curves in \mathbb{R}^{3}.)

EXAMPLE 2. Sketch the graph of $x^{2}+y^{2}-1=0$ in $\mathbb{R}^{2}, \mathbb{R}^{3}$.

A cylinder is a surface of all lines (called rulings) that are parallel to a given line and pass through a given plane curve.

An equation that contains only two of the variables x, y, z represents a cylindrical surface in \mathbb{R}^{3}. How to graph cylindrical surface:

1. graph the equation in the coordinate plane of the two variables that appear in the given equation;
2. translate that graph parallel to the axis of the missing variable.

EXAMPLE 3. Sketch the graph of $(x+2)^{2}+(y-4)^{2}=1$ in \mathbb{R}^{3}

EXAMPLE 4. Sketch the graph of $y=x^{2}$ in \mathbb{R}^{3}

EXAMPLE 5. Let S be the graph of $x^{2}+z^{2}-10 z+21=0$ in \mathbb{R}^{3}.
(a) Describe S.
(b) The intersection of S with the $x z$-plane is \qquad
(c) The intersection of S with the $y z$-plane is
(d) The intersection of S with the $x y$-plane is

Spheres

- Distance formula in \mathbb{R}^{3} : The distance between the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

EXAMPLE 6. Show that the equation $x^{2}+y^{2}+z^{2}+2 x-4 y+8 z+17=0$ represents a sphere, and find its center and radius.

In general, completing the squares in

$$
x^{2}+y^{2}+z^{2}+G x+H y+I z+J=0
$$

produces an equation of the form

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=k
$$

- If $k>0$ then the graph of this equation is \qquad
- If $k=0$, then the graph is \qquad
- If $k<0$ then \qquad

Regions in \mathbb{R}^{3}

EXAMPLE 7. Describe the set of all points in \mathbb{R}^{3} whose coordinates satisfy the following inequality: $x^{2}+y^{2}<16$

EXAMPLE 8. Describe the following region: $\left\{(x, y, z) \mid 9 \leq x^{2}+y^{2}+z^{2} \leq 16\right\}$

