12.4: The Cross Product

REVIEW: Determinant of 2×2 and 3×3 matrices.
A determinant of order 2 is defined by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

A determinant of order $\mathbf{3}$ is defined by

$$
\begin{aligned}
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| & =a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
& =a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}
\end{aligned}
$$

or copy the first two columns onto the end and then multiply along each diagonal and add those that move from left to right and subtract those that move from right to left:

$$
\left\lvert\, \begin{array}{lll|ll}
a_{1} & a_{2} & a_{3} & a_{1} & a_{2} \\
b_{1} & b_{2} & b_{3} & b_{1} & b_{2} \\
c_{1} & c_{2} & c_{3} & c_{1} & c_{2}
\end{array}=a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}\right.
$$

- THE CROSS PRODUCT IN COMPONENT FORM:

Given $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$. Then the cross product is :

$$
\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

REMARK 1. The cross product requires both of the vectors to be three dimensional vectors.
REMARK 2. The result of a dot product is a number and the result of a cross product is a VECTOR!!!
To remember the cross product component formula use the fact that the cross product can be represented as the determinant of order 3:

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

EXAMPLE 3. If $\mathbf{a}=\langle-2,1,1\rangle, \mathbf{b}=\langle 3,5,0\rangle$, and $\mathbf{c}=\langle-4,2,2\rangle$ compute each of the following:
(a) $\mathbf{a} \times$ b
(b) $\mathbf{b} \times \mathbf{a}$
(c) $\mathbf{a} \times(5 \mathbf{b})$
(d) $a \times a$
(e) $\mathbf{a} \times$ c

> Properties: $\begin{aligned} & \mathbf{a} \times \mathbf{a}=\mathbf{0} \\ & \mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a} \\ & (\alpha \mathbf{a}) \times \mathbf{b}=\mathbf{a} \times(\alpha \mathbf{b})=\alpha(\mathbf{a} \times \mathbf{b}), \quad \alpha \in \mathbb{R} \\ & \mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c} \\ & (\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}\end{aligned}$

EXAMPLE 4. Show that if \mathbf{a} and \mathbf{b} are parallel then $\mathbf{a} \times \mathbf{b}=\mathbf{0}$.

- GEOMETRIC INTERPRETATION OF THE CROSS PRODUCT:

Let θ be the angle between the two nonzero vectors \mathbf{a} and $\mathbf{b}, 0 \leq \theta \leq \pi$. Then

1. $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}| \cdot|\mathbf{b}| \sin \theta=$ the area of the parallelogram determined by \mathbf{a} and \mathbf{b};
2. $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b};
3. the direction of $\mathbf{a} \times \mathbf{b}$ is determined by "right hand" rule: if the fingers of your right hand curl through the angle θ from \mathbf{a} to \mathbf{b}, then your thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

FACT:

$$
\mathbf{a} \| \mathbf{b} \quad \Leftrightarrow \quad \mathbf{a} \times \mathbf{b}=0
$$

EXAMPLE 5. Given the points $A(1,0,0), B(1,1,1)$ and $C(2,-1,3)$.Find
(a) the area of the triangle determined by these points.
(b) Find a unit vector $\hat{\mathbf{n}}$ orthogonal to the plane that contains the points A, B, C.

- SCALAR TRIPLE PRODUCT of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})
$$

Note that the scalar triple product is a NUMBER.

FACTS:

1. $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
2. If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ and $\mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ then $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
3. $|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|=$ the volume of the parallelepiped determined by $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

EXAMPLE 6. Determine if the vectors

$$
\mathbf{a}=\langle 0,-9,18\rangle, \quad \mathbf{b}=\langle 1,4,-7\rangle, \quad \mathbf{c}=\langle 2,-1,4\rangle
$$

are coplanar (i.e. they lie in the same plane).

