12.6: Quadric surfaces

REVIEW: Parabola, hyperbola and ellipse.

The most general second-degree equation in three variables x, y and z :

$$
\begin{equation*}
A x^{2}+B y^{2}+C z^{2}+a x y+b x z+c y z+d_{1} x+d_{2} y+d_{3} z+E=0 \tag{1}
\end{equation*}
$$

where $A, B, C, a, b, c, d_{1}, d_{2}, d_{3}, E$ are constants. The graph of (1) is a quadric surface.
Note if $A=B=C=a=b=c=0$ then (1) is a linear equation and its graph is a plane (this is the case of degenerated quadric surface).

By translations and rotations (1) can be brought into one of the two standard forms:

$$
A x^{2}+B y^{2}+C z^{2}+J=0 \quad \text { or } \quad A x^{2}+B y^{2}+I z=0 .
$$

In order to sketch the graph of a surface determine the curves of intersection of the surface with planes parallel to the coordinate planes. The obtained in this way curves are called traces or cross-sections of the surface.

Quadric surfaces can be classified into 5 categories:
ellipsoids, hyperboloids, cones, paraboloids, quadric cylinders. (shown in the table below.)

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ All traces are ellipses. If $a=b=c$, the ellipsoid is a sphere.	Cone	$\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ Horizontal traces are ellipses. Vertical traces in the planes $x=k$ and $y=k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k=0$.
Elliptic Paroboloid	$\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ Horizontal traces are ellipses. Vertical traces are hypertolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paroboloid	$\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$ Horizontal traces are byperbolas. Vertical traces are parabolas. The case where $c<0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ Horizontal traces in $z=k$ are ellipses if $k>c$ or $k<-c$. Vertical traces are hypertolas. The two minus signs indicate two sheets.

The elements which characterize each of these categories:

1. Standard equation.
2. Traces (horizontal (by planes $z=k$), $y z$-traces (by $x=0$) and $x z$-traces (by $y=0$).
3. Intercepts (in some cases).

To find the equation of a trace substitute the equation of the plane into the equation of the surface.
Note, in the examples below the constants a, b, and c are assumed to be positive.
EXAMPLE 1. Use traces to sketch the following quadric surfaces:
(a)

$$
x^{2}+\frac{y^{2}}{16}+\frac{z^{2}}{9}=1
$$

Solution

- Find intercepts:
- x-intercepts: if $y=z=0$ then $x=$
- y-intercepts: if $x=z=0$ then $y=$
- z-intercepts: if $x=y=0$ then $z=$
- Obtain traces of:
- the xy-plane: plug in $z=0$ and get $x^{2}+\frac{y^{2}}{16}=1$
- the yz-plane: plug in $x=0$ and get
- the $x z$-plane: plug in $y=0$ and get
- plug in $z=k$
- plug in $x=k$
- plug in $y=k$

(b)

$$
z^{2}=x^{2}+\frac{y^{2}}{9}
$$

Plane	Trace
$z=k$	
$x=0$	
$y=0$	

(c)

$$
z=\frac{x^{2}}{4}+\frac{y^{2}}{9}
$$

Plane	Trace
$z=k$	
$x=0$	
$y=0$	

TRANSLATIONS AND REFLECTIONS OF QUADRIC SURFACES EXAMPLE 2. Describe and sketch the surface $z=(x+4)^{2}+(y-2)^{2}+5$.

Note that replacing a variable by its negative in the equation of a surface causes that surface to be reflected about a coordinate plane.

EXAMPLE 3. Identify and sketch the surface.
(a) $z=-\left(x^{2}+y^{2}\right)$

(b) $y^{2}=x^{2}+z^{2}$

EXAMPLE 4. Classify and sketch the surface

$$
x^{2}+y^{2}+z-4 x-6 y+13=0
$$

