13.1: Vector Functions and Space Curves

A vector function is a function that takes one or more variables and returns a vector. Let $\mathbf{r}(t)$ be a vector function whose range is a set of 3 -dimensional vectors:

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k},
$$

where $x(t), y(t), z(t)$ are functions of one variable and they are called the component functions.
A vector function $\mathbf{r}(t)$ is continuous if and only if its component functions $x(t), y(t), z(t)$ are continuous.

Space curve is given by parametric equations:

$$
C=\{(x, y, z) \mid x=x(t), y=y(t), z=z(t), \quad t \text { in } I\},
$$

where I is an interval and t is a parameter.
FACT: Any continuous vector-function $\mathbf{r}(t)$ defines a space curve C that is traced out by the tip of the moving vector $\mathbf{r}(t)$.

Any parametric curve has a direction of motion given by increasing of parameter.

EXAMPLE 1. Describe the curve defined by the vector function (indicate direction of motion):
(a) $\mathbf{r}(t)=\langle\cos t, \sin t, 0\rangle$

(b) $\mathbf{r}(t)=\langle\cos a t, \sin a t, c\rangle$ where a and c are positive constants.

(c) $\mathbf{r}(t)=\langle 2 \cos t, 3 \sin t, 1\rangle, 0 \leq t \leq 2 \pi$

(d) $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$

(e) $\mathbf{r}(t)=\langle 1+t, 3+2 t, 4-5 t\rangle,-1 \leq t \leq 1$.

EXAMPLE 2. Show that the the curve given by

$$
\mathbf{r}(t)=\langle\sin t, 2 \cos t, \sqrt{3} \sin t\rangle
$$

lies on both a plane and a sphere. Then conclude that its graph is a circle and find its radius.

13.2 Derivatives of Vector Functions

The derivative \mathbf{r}^{\prime} of a vector function \mathbf{r} is defined just as for a real-valued function:

$$
\frac{\mathrm{d} \mathbf{r}\left(t_{0}\right)}{\mathrm{d} t}=\mathbf{r}^{\prime}\left(t_{0}\right)=\lim _{h \rightarrow 0} \frac{\mathbf{r}\left(t_{0}+h\right)-\mathbf{r}\left(t_{0}\right)}{h}
$$

if the limit exists. The derivative $\mathbf{r}^{\prime}\left(t_{0}\right)$ is the tangent vector to the curve $\mathbf{r}(t)$ at the point $\mathbf{r}\left(t_{0}\right)=$ $\left\langle x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right\rangle$.

THEOREM 3. If the functions $x(t), y(t), z(t)$ are differentiable, then

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k} .
$$

EXAMPLE 4. Given $\mathbf{r}(t)=(1+t)^{2} \mathbf{i}+e^{t} \mathbf{j}+\sin 3 t \mathbf{k}$.
(a) Find $\mathbf{r}^{\prime}(t)$
(b) Find a tangent vector to the curve at $t=0$.
(c) Find a tangent line to the curve at $t=0$.
(c) Find a tangent line to the curve at the point ($1,1,0$).

