13.3: Arc Length and curvature of a curve

The length of a curve

The length of a plane curve with parametric equations $x=x(t), y=y(t), a \leq t \leq b$, as the limit of lengths of inscribed broken lines is

$$
L=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

under the assumption that $x^{\prime}(t)$ and $y^{\prime}(t)$ exist and continuous
In exactly the same way the length of a space curve given by the parametric equation

$$
x=x(t), y=y(t), z=z(t), \quad a \leq t \leq b,
$$

as the limit of lengths of inscribed broken lines, is

$$
L=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

under the assumption that $x^{\prime}(t), y^{\prime}(t)$, and $z^{\prime}(t)$ exist and continuous.

Both cases of lengths of plane and space curves can be simultaneously written as

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

where

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

is the vector function describing the curve.
EXAMPLE 1. Find the length of the curve:
(a) $\mathbf{r}(t)=\langle-2 t, 5 \cos t, 5 \sin t\rangle, \quad-10<t<10$.
(b) $\mathbf{r}(t)=\left\langle 4 t, \frac{2 \sqrt{2}}{3} t^{3}, \frac{1}{5} t^{5}\right\rangle, \quad 0 \leq t \leq 2$

The Arc Length Function/Parametrization

Assume again that a curve C is given by the vector function

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, \quad a \leq t \leq b .
$$

The function

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau=\int_{a}^{t} \sqrt{x^{\prime}(\tau)^{2}+y^{\prime}(\tau)^{2}+z^{\prime}(\tau)^{2}} d \tau \Leftrightarrow \frac{d s}{d t}=\left|\mathbf{r}^{\prime}(t)\right|, s(a)=0
$$

is called the arc length function of the curve C.
The geometric meaning: $s(t)$ is the length of the part of C between the points $\mathbf{r}(a)$ and $\mathbf{r}(t)$.

If L is the Length of the curve C then for every $s \in[0, L]$ there exists unique $t(s)$ such that the length of the curve between $\mathbf{r}(a)$ and $\mathbf{r}(t(s))$ is equal to s.

The curve given by the vector function

$$
\widetilde{\mathbf{r}}(s):=\mathbf{r}(t(s))
$$

trace out the same curve C in \mathbb{R}^{3}, as $\mathbf{r}(t)$, but the motion along C with respect to the new parameter s is different, than with respect to the old parameter t. More precisely the motion along C with respect to s has the unit speed at every points, because

$$
\left|\frac{d \widetilde{\mathbf{r}}}{d s}\right|=\left|\frac{d \mathbf{r}}{d t}\right|\left|\frac{d t}{d s}\right|=1
$$

By finding the function $t=t(s)$ (i.e., the inverse to the arc length function), one reparametrizes the curve C with respect to the arc length

EXAMPLE 2. Reparametrize the curve with respect to arc length measured from the point where $t=0$ in the direction of increasing t, i.e. find $t(s)$, if $\mathbf{r}(t)=(1+4 t) \mathbf{i}+(1-3 t) \mathbf{j}+(1+2 t) \mathbf{k}$

Curvature of the curve

The unit tangent vector

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

Assume that the curve is parametrized by arc length parameter s, i.e. is represented by a vector function $\mathbf{r}(s)$ such that $\left|r^{\prime}(s)\right|=1$. Then the curvature $k(s)$ (at the point $\mathbf{r}(s)$ is defined as follows

$$
k(s)=\left|r^{\prime \prime}(s)\right|=\left|\frac{d \mathbf{T}}{d s}\right|
$$

i.e., the curvature of the curve is the magnitude of the acceleration if one moves along the curve with unit speed.

If a curve C is parametrized by a parameter T (which not necessary by the arc length parametriation), then

$$
\begin{equation*}
k(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|} \tag{1}
\end{equation*}
$$

EXAMPLE 3. What is the curvature of the circle of radius R

REMARK 4. The curvature of a curve is identically equal to zero if and only if the curve is a straight line

EXAMPLE 5. Let $\mathbf{r}(t)=\langle 3 \cos 2 t, 3 \sin 2 t,-3 t\rangle, t \in \mathbb{R}$.
(a) Find the unit tangent $T(t)$ of the curve given by $\mathbf{r}(t)$
(b) Find the curvature of the curve given by $\mathbf{r}(t)$.

REMARK 6. From (1), using the fact that given two vctors \mathbf{a} and \mathbf{b} one has $\sqrt{|\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}}=$ $|\mathbf{a} \times \mathbf{b}|$, one can deduce the following formula for the curvature in terms of $\mathbf{r}(\mathbf{t})$ and their derivatives up to order 2 :

$$
k(T)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

Prncipal unit normal vector

Note that $|\mathbf{T}|^{2}=\mathbf{T}(t) \cdot \mathbf{T}(t)=1$. Differentiating this identity we get that $2 \mathbf{T}^{\prime}(t) \cdot \mathbf{T}(t)=0$, i.e $\mathbf{T}^{\prime}(t) \perp \mathbf{T}(t)$. Assume that $\mathbf{T}^{\prime}(t) \neq 0$ (equivalently the curvature $\left.k(t) \neq 0\right)$. Normalizing $T^{\prime}(t)$ we obtain so called principal unit normal vector or simply unit normal:

$$
\mathbf{N}(t):=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}
$$

Geometric meaning of the unit normal: the direction of the acceleration if one moves with along the curve with the unit speed.

EXAMPLE 7. Find the unit normal for the curve from Example 5.

REMARK 8 (The notions discussed here will not be used in homework or tests, it is just an extra material). The vector

$$
\mathbf{B}(T):=\mathbf{T}(t) \times \mathbf{N}(t)
$$

is called the binormal vector. Using the binormal vector one can define another function $\tau(t)$ on the curve called torsion. In the arc length parameter s

$$
|\tau(s)|=\left|\frac{d \mathbf{B}(s)}{d s}\right|
$$

(the sign of $\tau(s)$ can be also specified but at this stage it is not important) In the arbitrary parameter T

$$
|\tau(t)|=\frac{\left|B^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

The triple of vectors $(\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t))$ is called the Frenet-Serret moving frame and it is the basic tool in the study of curves in \mathbb{R}^{3} up to the rigid motions, i.e. translations and rotations. Using the Frenet-Serres it can be shown that the curvature and the torsion define the curve in \mathbb{R}^{3} uniquely up to a rigid motion.

