13.4: Motion in Space: Velocity and Acceleration (very shortly as most of this material was in principle discussed in the previous two sections)

Suppose a particle moves through space so that its position vector at time t is $\mathbf{r}(t)$. Assume that $\mathbf{r}(t)$ is twice differentiable, i.e. each component has all derivatives up to order 2 at every point.

- The velocity of the particle at t is $\mathbf{v}(t):=\mathbf{r}^{\prime}(t)$.
- The speed of the particle at t is the magnitude of the velocity, $|\mathbf{v}(t)|=\left|\mathbf{r}^{\prime}(t)\right|$.
- The acceleration pf the particle at t is $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$.

EXAMPLE 1. Find the velocity, speed, and acceleration of a particle with the given position function

$$
\mathbf{r}(t)=-\sqrt{2} t \mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k}
$$

EXAMPLE 2. Find the position vector of a particle that has the given acceleration and the specified initial velocity and position.

$$
\mathbf{a}(t)=\left(t^{2}-t\right) \mathbf{i}+\cos 3 t \mathbf{j}+e^{-2 t} \mathbf{k}, \quad \mathbf{v}(0)=2 \mathbf{i}-3 \mathbf{j}, \quad \mathbf{r}(0)=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}
$$

