14.1: Functions of Several Variables

Consider the following formulas:

$$
\begin{gather*}
z=2-x-4 y \tag{1}\\
z=x^{2}+y^{2} \tag{2}\\
z=\sqrt{x^{2}+y^{2}} \tag{3}\\
z=\sqrt{1-x^{2}-y^{2}} \tag{4}
\end{gather*}
$$

DEFINITION 1. Let $D \subset \mathbb{R}^{2}$. A function f of two variables is a rule that assigns to each ordered pair (x, y) in D a unique real number denoted by $f(x, y)$.

The set D is the domain of f and the range of f is the set of values that f takes on, that is $\{f(x, y) \mid(x, y) \in D\}$.

REMARK 2. Obviously, one can choose the independent variables arbitrary, for example, $x=$ $f(y, z)$.

- GRAPH of $f(x, y)$.

Recall that a graph of a function f of one variable is a curve C with equation $y=f(x)$.
DEFINITION 3. The graph of f with domain D is the set:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f(x, y) . \quad(x, y) \in D\right\}
$$

The graph of a function f of two variables is a surface S in three dimensional space with equation $z=f(x, y)$.

EXAMPLE 4. Find the domain and sketch the graph of the functions (1)-(4). What is the range?
(1) $z=2-x-4 y$
(2) $z=x^{2}+y^{2}$
D =
D $=$
(3) $z=\sqrt{x^{2}+y^{2}}$
(4) $z=\sqrt{1-x^{2}-y^{2}}$

D =
D =

EXAMPLE 5. Sketch the domain of each of the following:
(a) $z=\sqrt{x}-\frac{5}{\sqrt{y}}$

(b) $z=\ln \left(x^{2}+\frac{y^{2}}{16}-1\right)$

- LEVEL (CONTOUR) CURVES method of visualizing functions is the method borrowed from mapmakers. It is a contour map on which points of constant elevation are joined to form level (or contour) curves.

DEFINITION 6. The level (contour) curves of a function of two variables are the curves with equations

$$
f(x, y)=k
$$

where k is a constant in the range of f.
A level curve is the locus of all points at which f takes a given value k (it shows where the graph of f has height k).

EXAMPLE 7. Sketch the level curves of the functions (2) and (3) for the values $k=0,1,2,3,4$:
(2) $z=x^{2}+y^{2}$
(3) $z=\sqrt{x^{2}+y^{2}}$

- Functions of three variables.

DEFINITION 8. Let $D \subset \mathbb{R}^{3}$. A function f of three variables is a rule that assigns to each ordered pair (x, y, z) in D a unique real number denoted by $f(x, y, z)$.

Examples of functions of 3 variables:

$$
\begin{gathered}
f(x, y, z)=x^{2}+y^{2}+z^{2}, \\
u=x y z \\
T\left(s_{1}, s_{2}, s_{3}\right)=\ln s_{1}+12 s_{2}-s_{3}^{-5} .
\end{gathered}
$$

Emphasize that domains of functions of three variables are regions in three dimensional space.

EXAMPLE 9. Find the domain of the following function:

$$
f(x, y, z)=\frac{\ln \left(36-x^{2}-y^{2}-z^{2}\right)}{\sqrt{x^{2}+y^{2}+z^{2}-25}}
$$

Note that for functions of three variables it is impossible to visualize its graph. However we can examine them by their level surfaces:

$$
f(x, y, z)=k
$$

where k is a constant in the range of f. If the point (x, y, z) moves along a level surface, the value of $f(x, y, z)$ remains fixed.

EXAMPLE 10. Find the level surfaces of the function $u=x^{2}+y^{2}-z$.

REMARK 11. For any function there exist a unique level curve (surface) through given point!!!

