14.5: The Chain Rule

Chain Rule for functions of a single variable: If $y=f(x)$ and $x=g(t)$ where f and g are differentiable functions, then y is indirectly a differentiable function of t and

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\mathrm{~d} g}{\mathrm{~d} t}
$$

EXAMPLE 1. Let $z=x^{y}$, where $x=t^{2}, y=\sin t$. Compute $z^{\prime}(t)$.

Assume that all functions below have continuous derivatives (ordinary or partial).

- CASE 1: $z=f(x, y)$, where $x=x(t), y=y(t)$ and compute $z^{\prime}(t)$. Chain Rule:

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=\frac{\partial z}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial z}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

SOLUTION OF EXAMPLE 1:

EXAMPLE 2. The radius of a right circular cone is increasing at a rate of $1.8 \mathrm{~cm} / \mathrm{s}$ while its height is decreasing at a rate $2.5 \mathrm{~cm} / \mathrm{s}$. At what rate is the volume of the cone changing when the radius is 120 cm and the height is 140 cm .

- CASE 2: $z=f(x, y)$, where $x=x(s, t), y=y(s, t)$ and compute z_{s} and z_{t}. Chain Rule:

Tree diagram:

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

EXAMPLE 3. Write out the Chain Rule for the case where $w=f(x, y, z)$ and $x=x(u, v)$, $y=y(u, v)$ and $z=z(u, v)$.

EXAMPLE 4. If $z=\sin x \cos y$, where $x=(s-t)^{2}, y=s^{2}-t^{2}$ find $z_{s}+z_{t}$.

EXAMPLE 5. Show that

$$
g(s, t)=f\left(s^{2}-t^{2}, t^{2}-s^{2}\right)
$$

satisfies the equation

$$
t \frac{\partial g}{\partial s}+s \frac{\partial g}{\partial t}=0
$$

EXAMPLE 6. If $u=x^{2} y+y^{3} z^{2}$ where $x=r s e^{t}, y=r+s^{2} e^{-t}, z=r s \sin t$, find u_{s} when $(r, s, t)=(1,2,0)$

Implicit differentiation: Suppose that an equation

$$
F(x, y)=0
$$

defines y implicitly as a differentiable function of x, i.e. $y=y(x)$, where $F(x, y(x))=0$ for all x in the domain of $y(x)$. Find y^{\prime} :

EXAMPLE 7. Find y^{\prime} if $x^{4}+y^{3}=6 e^{x y}$.

Suppose that an equation

$$
F(x, y, z)=0
$$

defines z implicitly as a differentiable function of x and y, i.e. $z=z(x, y)$, where

$$
F(x, y, z(x, y))=0
$$

for all (x, y) in the domain of z. Find the partial derivatives z_{x} and z_{y} :

EXAMPLE 8. If $x^{4}+y^{3}+z^{2}+x y e^{z}=10$ find
(a) z_{x} and z_{y}
(b) x_{y} and x_{z}

