14.7: Maximum and minimum values

Function $y = f(x)$	Function of two variables $z = f(x, y)$
DEFINITION 1. A function $f(x)$ has a local maximum at $x = a$ if $f(a) \ge f(x)$ when x is near a (i.e. in a neighborhood of a). A function f has a local minimum at $x = a$ if $f(a) \le f(x)$ when x is near a.	DEFINITION 2. A function $f(x, y)$ has a local maximum at $(x, y) = (a, b)$ if $f(a, b) \ge f(x, y)$ when (x, y) is near (a, b) (i.e. in a neighborhood of (a, b)). A function f has a local minimum at $(x, y) = (a, b)$ if $f(a, b) \le f(x, y)$ when (x, y) is near (a, b) .
If the inequalities in this definition hold for ALL points x in the domain of f , then f has an absolute max (or absolute min) at a	If the inequalities in this definition hold for ALL points (x, y) in the domain of f , then f has an absolute maximum (or absolute minimum) at (a, b) .
If the graph of f has a tangent line at a local extremum, then the tangent line is horizontal: $f'(a) = 0$.	If the graph of f has a tangent plane at a local extremum, then the tangent PLANE is horizontal.
$\begin{array}{c c} & x \\ \hline 0 \\ \hline \end{array}$	

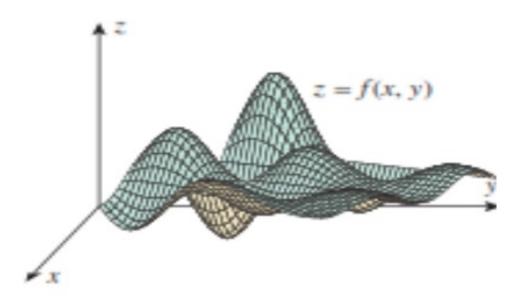
THEOREM 3. If f has a local extremum (that is, a local maximum or minimum) at (a, b) and the first-order partial derivatives exist there, then

$$f_x(a,b) = f_y(a,b) = 0$$
 (or, equivalently, $\nabla f(a,b) = 0.$)

DEFINITION 4. A point (a,b) such that $f_x(a,b) = 0$ and $f_y(a,b) = 0$, or one of this partial derivatives does not exist, is called a **critical point** of f.

At a critical point, a function could have a local max or a local min, or neither. We will be concerned with two important questions:

- Are there any local or absolute extrema?
- If so, where are they located?



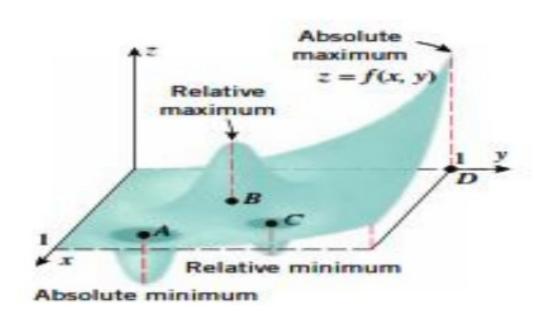
https://www.slideshare.net/abdulazizuinmlg/multivariate-calculus-mhsw-2

$in \mathbb{R}$	in \mathbb{R}^2
closed interval $[a, b]$	closed set
open interval (a, b)	open set
end points of an interval	boundary points

DEFINITION 5. A bounded set in \mathbb{R}^2 is one that contained in some disk.

THE EXTREME VALUE THEOREM:

Function $y = f(x)$	Function of two variables $z = f(x, y)$
If f is continuous on a closed inter- val $[a, b]$, then f attains an absolute maximum value $f(x_1)$ and an abso- lute minimum value $f(x_2)$ at some points x_1 and x_2 in $[a, b]$.	If f is continuous on a closed bounded set \mathcal{D} in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in \mathcal{D} .



https://www.slideshare.net/abdulazizuinmlg/multivariate-calculus-mhsw-2

EXAMPLE 6. Find ext	treme values	of $f(x, y)$	$= x^2 + y^2.$
---------------------	--------------	--------------	----------------

	Local	Absolute
Maximum		
Minimum		

Domain:

EXAMPLE 7. Find extreme values of $f(x, y) = 5 + \sqrt{1 - x^2 - y^2}$.

Local	Absolute

Domain:

EXAMPLE 8. Find extreme values of $f(x, y) = x^2 - y^2$.

REMARK 9. Example 8 illustrates so called **saddle point** of f. Note that the graph of f crosses its tangent plane at (a, b).

ABSOLUTE MAXIMUM AND MINIMUM VALUES on a closed bounded set.

THE EXTREME VALUE THEOREM:

To find the absolute maximum and	To find the absolute max and min values of a continuous func-
minimum values of a continuous	tion f on a closed bounded set D :
function f on a closed interval $[a, b]$:	
1. Find the values of f at the critical	1. Find the values of f at the critical points of f in D .
points of f in (a, b) .	
2. Find the values of f at the end-	2. Find the extreme values of f on the boundary of D . (This
points of the interval.	usually involves either the Calculus I approach or the Lagnrage multiplies $% \mathcal{L}^{(1)}$
	nethod of section 14.8 for this work.)
3. The largest of the values from	3. The largest of the values from steps 1&2 is the absolute
steps 1&2 is the absolute max value;	maximum value; the smallest of the values from steps $1\&2$ is
the smallest of the values from steps	the absolute minimum value.
1&2 is the absolute min value.	

- The quantity to me maximized/minimized is expressed in terms of variables (as few as possible!)
- Any constraints that are presented in the problem are used to reduce the number of variables to the point they are independent,
- After computing partial derivatives and setting them equal to zero you get purely algebraic problem (but it may be hard.)
- Sort out extreme values to answer the original question.

EXAMPLE 10. A lamina occupies the region $D = \{(x, y): 0 \le x \le 3, -2 \le y \le 4 - 2x\}$. The temperature at each point of the lamina is given by

$$T(x,y) = 4(x^{2} + xy + 2y^{2} - 3x + 2y) + 10.$$

Find the hottest and coldest points of the lamina.

Local/Relative Extrema

Second derivatives test:

Suppose f'' is continuous near a and Suppose that the second partial derivatives of f are continuf'(c) = 0 (i.e. *a* is a critical point). ous near (a, b) and $\nabla f(a, b) = \mathbf{0}$ (i.e. (a, b) is a critical point). Let $\mathcal{D} = \mathcal{D}(a, b) = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$ • If $\mathcal{D} > 0$ and $f_{xx}(a, b) > 0$ then f(a, b) is a local minimum. • If f''(c) > 0 then f(c) is a local minimum. • If $\mathcal{D} > 0$ and $f_{xx}(a, b) < 0$ then f(a, b) is a local maximum. • If f''(c) < 0 then f(c) is a local maximum. • If $\mathcal{D} < 0$ then f(a, b) is not a local extremum (saddle point). NOTE: If $\mathcal{D} = 0$ or does not exist, then the test gives no information. • If f''(c) = 0, then the test gives no information. fails. To remember formula for \mathcal{D} : $\mathcal{D} = f_{xx} f_{yy} - \left[f_{xy} \right]^2 = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$

Sketch of the proof of the Second Derivative test

EXAMPLE 11. Use the Second Derivative Test to confirm that a local cold point of the lamina in the previous Example is (2, -1).

EXAMPLE 12. Find the local maximum and minimum values and saddle point(s) of the function $f(x, y) = 4xy - x^4 - y^4$.