15.1: Double integrals over rectangles

Recall that a single definite integral can be interpreted as area:

The exact area is also the definition of the definite integral:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Problem: Assume that $f(x, y)$ is defined on a closed rectangle
$R=[a, b] \times[b, c]=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}$ and $f(x, y) \geq 0$ over R. Denote by S the part of the surface $z=f(x, y)$ over the rectangle R. What the volume of the region under S and above the $x y$-plane is?

Solution: Approximate the volume. Divide up $a \leq x \leq b$ into n subintervals and divide up $c \leq y \leq d$ into m subintervals. From each of these smaller rectangles choose a point $\left(x_{i}^{*}, y_{j}^{*}\right)$.

Over each of these smaller rectangles we will construct a box whose height is given by $f\left(x_{i} *, y_{j}^{*}\right)$.

The volume is given by

$$
\lim _{n, m \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y
$$

which is also the definition of a double integral

$$
\iint_{R} f(x, y) \mathrm{d} A .
$$

Another notation: $\iint_{R} f(x, y) \mathrm{d} A=\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y$.
THEOREM 1. If f is continuous on R then f is integrable over R.
THEOREM 2. If $f(x, y) \geq 0$ and f is continuous on the rectangle $R=[a, b] \times[c, d]$, then the volume V of the solid S that lies above R and inder the graph of f, i.e.

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x, y) \in R, 0 \leq z \leq f(x, y),(x, y) \in R\right\},
$$

is

$$
V=\iint_{R} f(x, y) \mathrm{d} A .
$$

EXAMPLE 3. Evaluate the integral

$$
\iint_{R} 4 \mathrm{~d} A
$$

where $R=[-1,0] \times[-3,3]$ by identifying it as a volume of a solid.

Iterated integrals

Suppose that $f(x, y)$ is integrable over the rectangle $R=[a, b] \times[b, c]$.
Partial integration of f with respect to x : $\int_{a}^{b} f(x, y) \mathrm{d} x$
Partial integration of f with respect to y : $\int_{c}^{d} f(x, y) \mathrm{d} y$
EXAMPLE 4.

$$
\begin{aligned}
& \int_{0}^{4}\left(x+3 y^{2}\right) \mathrm{d} x= \\
& \int_{1}^{4} e^{x y} \mathrm{~d} y=
\end{aligned}
$$

Iterated integrals:

$$
\int_{a}^{b}\left[\int_{c}^{d} f(x, y) \mathrm{d} y\right] \mathrm{d} x=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

and

$$
\int_{c}^{d}\left[\int_{a}^{b} f(x, y) \mathrm{d} x\right] \mathrm{d} y=\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

EXAMPLE 5. Evaluate the integrals:

$$
I_{1}=\int_{0}^{\ln 2} \int_{0}^{\ln 5} e^{2 x-y} \mathrm{~d} y \mathrm{~d} x, \quad I_{2}=\int_{0}^{\ln 5} \int_{0}^{\ln 2} e^{2 x-y} \mathrm{~d} x \mathrm{~d} y
$$

FUBINI's THEOREM:If f is continuous on on the rectangle $R=[a, b] \times[c, d]$ then

$$
\iint_{R} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x=\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

EXAMPLE 6. Make a conclusion from the Example 5 based on the Fubini Theorem.

COROLLARY 7. If g and h are continuous functions of one variable and $R=[a, b] \times[c, d]$ then

$$
\iint_{R} g(x) h(y) \mathrm{d} A=\left(\int_{a}^{b} g(x) \mathrm{d} x\right)\left(\int_{c}^{d} h(y) \mathrm{d} y\right) .
$$

EXAMPLE 8. Evaluate

$$
\iint_{R} x \cos (x y) \mathrm{d} A
$$

where $R=[-\pi / 2, \pi / 2] \times[1,5]$ and describe your result geometrically.

EXAMPLE 9. Express the volume of the solid S lying under the circular paraboloid $z=x^{2}+y^{2}$ and above the rectangle $R=[-2,2] \times[-3,3]$ using an iterated integral.

