15.2: Double Integrals over General Regions

All functions below are continuous on their domains.

Let D be a bounded region enclosed in a rectangular region R such that its boundary ∂D is sufficiently nice, for example, is a piecewise differentiable curve. We define

$$F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \text{ is in } D\\ 0 & \text{if } (x,y) \text{ is in } R \text{ but not in } D \end{cases}$$

If F is integrable over R, then we say F is *integrable* over D and we define the double integral of f over D by

$$\iint_D f(x,y) \, \mathrm{d}A = \iint_R F(x,y) \, \mathrm{d}A$$

FACT: If $f(x, y) \ge 0$ and f is continuous on the region D then the volume V of the solid S that lies above D and under the graph of f, i.e.

$$S = \{ (x, y, z) \in \mathbb{R}^3 | 0 \le z \le f(x, y), (x, y) \in D \},\$$

is

$$V = \iint_D f(x, y) \, \mathrm{d}A.$$

EXAMPLE 1. Evaluate the integral

$$\iint_D \sqrt{16 - x^2 - y^2} \, \mathrm{d}A$$

where $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 16\}$ by identifying it as a volume of a solid.

Properties of double integrals:

• If $D = D_1 \cup D_2$, where D_1 and D_2 do not overlap except perhaps their boundaries then

$$\iint_D f(x,y) \, \mathrm{d}A = \iint_{D_1} f(x,y) \, \mathrm{d}A + \iint_{D_2} f(x,y) \, \mathrm{d}A.$$

• If α and β are real numbers then

$$\iint_{D} (\alpha f(x,y) + \beta g(x,y)) \, \mathrm{d}A = \alpha \iint_{D} f(x,y) \, \mathrm{d}A + \beta \iint_{D} g(x,y) \, \mathrm{d}A.$$

• If we integrate the constant function f(x, y) = 1 over D, we get **area** of D:

$$\iint_D 1 \, \mathrm{d}A = A(D).$$

EXAMPLE 2. If $D = \{(x, y) | x^2 + y^2 \le 25\}$ then

$$\iint_D \, \mathrm{d}A =$$

Computation of double integral:

THEOREM 3. If D is a region of type I such tha

$$D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$$
 then

$$\iint_D f(x,y) \, \mathrm{d}A = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \, \mathrm{d}y \mathrm{d}x.$$

THEOREM 4. If D is a region of type II s.t. $D = \{(x,y) | c \le y \le d, h_1(y) \le x \le h_2(y)\}$ then

$$\iint_D f(x,y) \,\mathrm{d}A = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \,\mathrm{d}x \mathrm{d}y.$$

EXAMPLE 5. Evaluate $I = \iint_D 30x^2y \, dA$, where D is the region bounded by the lines x = 2, y = x and the hyperbola xy = 1 in two different ways (i.e. considering D as a type I and then as a type II region).

•

EXAMPLE 6. Find the volume of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes x = 0, y = z, z = 0 in the first octant.

EXAMPLE 7. Evaluate the following iterated integral by reversing the order of integration:

$$I = \int_0^1 \int_{x^2}^1 x^3 \sin(y^3) \, \mathrm{d}y \mathrm{d}x$$