15.3: Double Integrals in Polar Coordinates

The polar coordinate system consists of:

- the pole (or origin) labeled O;
- the polar axis which is a ray starting at O (usually drawn horizontally to the right);

The polar coordinates (r, θ) of a point P :

- θ is the angle between the polar axis and the line $O P$ (the angle is positive if measured in counterclockwise direction from the polar axis);
- r is the distance from O to P.

EXAMPLE 1. Plot the points whose polar coordinates are given:
(a) $(1, \pi / 3)$
(b) $(5,-\pi / 2)$.

The connection between polar and Cartesian coordinates:

$\cos \theta=$	$\sin \theta=$
$x=$	$y=$
$r^{2}=$	$\tan \theta=$

REMARK 2. In converting from the Cartesian to polar coordinates we must choose θ so that the point (r, θ) lies in the correct quadrant.

EXAMPLE 3. What curve is represented by the following polar equation
(a) $r=12$
(b) $\theta=\frac{\pi}{3}$

EXAMPLE 4. Sketch the region in the Cartesian plane consisting of points whose polar coordinates satisfy the following conditions: $1 \leq r \leq 2, \quad \pi / 4 \leq \theta \leq \pi$.

EXAMPLE 5. Find a polar equation for the curve represented by the given Cartesian equation:
(a) $x^{2}+y^{2}=2 b y$
(b) $(x-a)^{2}+y^{2}=a^{2}$

Using polar coordinates to evaluate double integrals

EXAMPLE 6. Evaluate

$$
I=\iint_{D} \arctan \frac{y}{x} \mathrm{~d} A
$$

where $D=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4, x \leq y \leq \sqrt{3} x, x \geq 0\right\}$.

THEOREM 7. Change to polar coordinates in a double integral: Let f be a continuous on the region D. Denote by D^{*} the region representing D in the polar coordinates (r, θ). Then

$$
\iint_{D} f(x, y) \mathrm{d} A=\iint_{D^{*}} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta .
$$

REMARK 8. Be careful not to forget the additional factor r on the right side of the formula.

Solution of Example 6:
Evaluate $I=\iint_{D} \arctan \frac{y}{x} \mathrm{~d} A$, where $D=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4, x \leq y \leq \sqrt{3} x, x \geq 0\right\}$.

EXAMPLE 9. Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$, above the $x y$-plane and inside the cylinder $x^{2}+y^{2}=2 x$.

EXAMPLE 10. Find the area of the region inside the circle $r=4 \sin \theta$ and outside the circle $r=2$.

