## 16.1: Vector Fields

A vector function

$$\mathbf{r} = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

is an example of a function whose domain is a set of real numbers and whose range is a set of vectors in  $\mathbb{R}^3$ :

$$\mathbf{r}(t): \mathbb{R} \to \mathbb{R}^3$$

A vector fields on  $\mathbb{R}^2$  (or  $\mathbb{R}^3$ ) is an assignment so that to every point of  $\mathbb{R}^2$  (or of  $\mathbb{R}^3$ ) one assigns a vector in  $\mathbb{R}^2$  (or  $\mathbb{R}^3$ ). Usually one attaches the starting point of this vector to the point to which this vector is assigned.

Vector field on  $\mathbb{R}^2$ .

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \langle P(x,y), Q(x,y) \rangle$$

Vector field on  $\mathbb{R}^3$ :

$$\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k} = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$$

A vector field in the plane (for instance), can be visualized as a collection of arrows with a given magnitude and direction, each attached to a point in the plane.

EXAMPLE 1. Describe the vector field  $\mathbf{F}(x, y) = -y\mathbf{i} + x\mathbf{j}$  by sketching.



Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

## EXAMPLE 2. Gravitational Field:

By Newton's Law of Gravitation the magnitude of the gravitational force between two objects with masses m and M is The gravitational force acting on the object at (x, y, z) is

$$|\mathbf{F}| = G \frac{mM}{r^2},$$

where  $r = \sqrt{x^2 + y^2 + z^2}$  is the distance between the objects and G is the gravitational constant.

Function u = f(x, y, z) is also called a scalar field. Its gradient is also called gradient vector field:

$$\mathbf{F}(x, y, z) = \nabla f(x, y, z) =$$

EXAMPLE 3. Find the gradient vector field of f(x, y, z) = xyz.

DEFINITION 4. A vector field  $\mathbf{F}$  is called a conservative vector field if it is the gradient of some scalar function f s.t  $\mathbf{F} = \nabla f$ . In this situation f is called a **potential function** for  $\mathbf{F}$ .

For instance, the vector field  $\mathbf{F}(x, y) = \langle x, y \rangle$  is a conservative vector field with a potential function f(x, y) = xy because

REMARK 5. Not all vector fields are conservative, but such fields do arise frequently in Physics.

EXAMPLE 6. (see Example 2)Let

$$f(x, y, z) = \frac{GmM}{r},$$

where  $r = \sqrt{x^2 + y^2 + z^2}$ . Find its gradient and and answer the questions:

- (a) Is the gravitational field conservative?
- (b) What is a potential function of the gravitational field?