16.1: Vector Fields

A vector function

$$
\mathbf{r}=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

is an example of a function whose domain is a set of real numbers and whose range is a set of vectors in \mathbb{R}^{3} :

$$
\mathbf{r}(t): \mathbb{R} \rightarrow \mathbb{R}^{3}
$$

A vector fields on \mathbb{R}^{2} (or \mathbb{R}^{3}) is an assignment so that to every point of \mathbb{R}^{2} (or of \mathbb{R}^{3}) one assigns a vector in \mathbb{R}^{2} (or \mathbb{R}^{3}). Usually one attaches the starting point of this vector to the point to which this vector is assigned.

Vector field on \mathbb{R}^{2}.

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\langle P(x, y), Q(x, y)\rangle
$$

Vector field on \mathbb{R}^{3} :

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle
$$

A vector field in the plane (for instance), can be visualized as a collection of arrows with a given magnitude and direction, each attached to a point in the plane.

EXAMPLE 1. Describe the vector field $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$ by sketching.

Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

EXAMPLE 2. Gravitational Field:

By Newton's Law of Gravitation the magnitude of the gravitational force between two objects with masses m and M is The gravitational force acting on the object at (x, y, z) is

$$
|\mathbf{F}|=G \frac{m M}{r^{2}}
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$ is the distance between the objects and G is the gravitational constant.

Function $u=f(x, y, z)$ is also called a scalar field. Its gradient is also called gradient vector field:

$$
\mathbf{F}(x, y, z)=\nabla f(x, y, z)=
$$

EXAMPLE 3. Find the gradient vector field of $f(x, y, z)=x y z$.

DEFINITION 4. A vector field \mathbf{F} is called a conservative vector field if it the gradient of some scalar function f s.t $\mathbf{F}=\nabla f$. In this situation f is called a potential function for \mathbf{F}.

For instance, the vector field $\mathbf{F}(x, y)=\langle x, y\rangle$ is a conservative vector field with a potential function $f(x, y)=x y$ because

REMARK 5. Not all vector fields are conservative, but such fields do arise frequently in Physics.

EXAMPLE 6. (see Example 2)Let

$$
f(x, y, z)=\frac{G m M}{r}
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Find its gradient and and answer the questions:
(a) Is the gravitational field conservative?
(b) What is a potential function of the gravitational field?

