16.2: Line Integrals

Line integrals on plane: Let C be a plane curve with parametric equations:

$$
x=x(t), y=y(t), \quad a \leq t \leq b,
$$

or we can write the parametrization of the curve as a vector function:

$$
\mathbf{r}(t)=\langle x(t), y(t)\rangle, \quad a \leq t \leq b .
$$

DEFINITION 1. The line integral of $f(x, y)$ with respect to arc length, or the line integral of f along C is

$$
\int_{C} f(x, y) \mathrm{d} s
$$

https://brilliant.org/wiki/line-integral/
Recall that the arc length of a curve given by parametric equations $x=x(t), y=y(t), \quad a \leq t \leq b$ can be found as

$$
L=\int_{a}^{b} \mathrm{~d} s
$$

where

$$
\mathrm{d} s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \mathrm{~d} t .
$$

The line integral is then

$$
\int_{C} f(x, y) \mathrm{d} s=
$$

If we use the vector form of the parametrization we can simplify the notation up noticing that

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle
$$

and then

$$
\mathrm{d} s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \mathrm{~d} t=
$$

Using this notation the line integral becomes,

$$
\int_{C} f(x, y) \mathrm{d} s=\int_{a}^{b} f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t .
$$

REMARK 2. The value of the line integral does not depend on the parametrization of the curve, provided that the curve is traversed exactly once as t increases from a to b.

Let us emphasize that

$$
\mathrm{d} s=\left|r^{\prime}(t)\right| \mathrm{d} t=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} \mathrm{~d} t
$$

EXAMPLE 3. Evaluate the line integral $\int_{C} y \mathrm{~d} s$, where $C: x=t^{3}, y=t^{2}, 0 \leq t \leq 1$.

Line integrals in space: Let C be a space curve with parametric equations:

$$
x=x(t), y=y(t), z=z(t), \quad a \leq t \leq b
$$

or

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, \quad a \leq t \leq b
$$

The line integral of f along C is

$$
\int_{C} f(x, y, z) \mathrm{d} s=\int_{a}^{b} f(x(t), y(t), z(t))\left|r^{\prime}(t)\right| \mathrm{d} t
$$

Here

$$
\mathrm{d} s=\left|r^{\prime}(t)\right| \mathrm{d} t=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} \mathrm{~d} t
$$

EXAMPLE 4. Evaluate the line integral $\int_{C}(x+y+z) \mathrm{d} s$, where C is the line segment joining the points $A(-1,1,2)$ and $B(2,3,1)$.

Physical interpretation of a line integral: Let $\rho(x, y, z)$ represents the linear density at a point (x, y, z) of a thin wire shaped like a curve C. Then the mass m of the wire is:

$$
m=\int_{C} \rho(x, y, z) \mathrm{d} s
$$

EXAMPLE 5. A thin wire with the linear density $\rho(x, y)=x^{2}+2 y^{2}$ takes the shape of the curve C which consists of the arc of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(0,1)$. Find the mass of the wire.

Line integrals with respect to x, y, and z. Let C be a space curve with parametric equations:

$$
x=x(t), y=y(t), z=z(t), \quad a \leq t \leq b,
$$

The line integral of \mathbf{f} with respect to x is,

$$
\int_{C} f(x, y, z) \mathrm{d} x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) \mathrm{d} t .
$$

The line integral of \mathbf{f} with respect to y is,

$$
\int_{C} f(x, y, z) \mathrm{d} y=\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) \mathrm{d} t .
$$

The line integral of \mathbf{f} with respect to z is,

$$
\int_{C} f(x, y, z) \mathrm{d} z=
$$

These integrals often appear together by the following notation:

$$
\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z
$$

or

$$
\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y .
$$

EXAMPLE 6. Compute

$$
I=\int_{C}-\frac{y}{x^{2}+y^{2}} \mathrm{~d} x+\frac{x}{x^{2}+y^{2}} \mathrm{~d} y
$$

where C is the circle $x^{2}+y^{2}=1$ oriented in the counterclockwise direction.

Line integrals of vector fields.

PROBLEM: Given a continuous force field,

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k},
$$

such as a gravitational field. Find the work done by the force \mathbf{F} in moving a particle along a curve

$$
C: \quad \mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, \quad a \leq t \leq b .
$$

DEFINITION 7. Let \mathbf{F} be a continuous vector field defined on a curve C given by a vector function $\mathbf{r}(t), a \leq t \leq b$. Then the line integral of \mathbf{F} along C is

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}(t)=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t .
$$

REMARK 8. Note that this integral depends on the curve orientation:

$$
\int_{-C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}(t)=-\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}(t)
$$

Relationship between line integrals of vector fields and line integrals with respect to x, y, and z.

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}(t)=
$$

EXAMPLE 9. Find the work done by the force field $\mathbf{F}(x, y, z)=\langle x y, y z, x z\rangle$ in moving a particle along the curve $C: \mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle, 0 \leq t \leq 1$.

