16.7: Surface Integrals

Problem: Find the mass of a thin sheet (say, of aluminum foil) which has a shape of a surface S and the density (mass per unit area) at the point (x, y, z) is $\rho(x, y, z)$.

Solution:

If S is given by $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k},(u, v) \in D$, then the surface integral of f over the surface S is:

$$
\iint_{S} f(x, y, z) \mathrm{d} S=\iint_{D} f(\mathbf{r}(u, v))|\mathbf{N}(u, v)| \mathrm{d} A=
$$

EXAMPLE 1. Find the mass of a thin funnel in the shape of a cone $z=\sqrt{x^{2}+y^{2}}$ inside the cylinder $x^{2}+y^{2} \leq 2 x$, if its density is a function $\rho(x, y, z)=x^{2}+y^{2}+z^{2}$.

- Oriented surfaces. We consider only two-sided surfaces.

Let a surface S has a tangent plane at every point (except at any boundary points). There are two unit normal vectors at $(x, y, z): \hat{\mathbf{n}}$ and $-\hat{\mathbf{n}}$.

If it is possible to choose a unit normal vector $\hat{\mathbf{n}}$ at every point (x, y, z) of a surface S so that $\hat{\mathbf{n}}$ varies continuously over S, then S is called oriented surface and the given choice of $\hat{\mathbf{n}}$ provides S with an orientation. There are two possible orientations for any orientable surface:

Convention:For closed surfaces the positive orientation is outward.

- Surface integrals of vector fields.

DEFINITION 2. If \mathbf{F} is a continuous vector field defined on an oriented surface S with unit normal vector $\hat{\mathbf{n}}$, then the surface integral of \mathbf{F} over S is

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} \mathrm{~d} S
$$

This integral is also called the flux of \mathbf{F} across S.

Note that if S is given by $\mathbf{r}(u, v),(u, v) \in D$, then

$$
\hat{\mathbf{n}}=\frac{\mathbf{n}}{|\mathbf{n}|}=
$$

and
$\mathrm{d} \mathbf{S}=$

Finally,

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=
$$

EXAMPLE 3. Find the flux of the vector field

$$
\mathbf{F}=\left\langle x^{2}, y^{2}, z^{2}\right\rangle
$$

across the surface

$$
S=\left\{z^{2}=x^{2}+y^{2}, 0 \leq z \leq 2\right\}
$$

