Homework Assignment 11 in MATH309-Spring 2013, ©Igor Zelenko

due April 24, 2013 . Show your work in all exercises
Topics covered: Elements of Fourier series and their applications in the method of separation of variables for the heat equation and Laplace equations on a rectangle

1. Graph each of the following functions and find the corresponding Fourier series
(a)

$$
f(x)=\left\{\begin{array}{ll}
2 x, & 0 \leq x \leq 3 \\
0, & -3<x<0
\end{array}, \quad \text { Period } 6\right.
$$

(b)

$$
f(x)=\left\{\begin{array}{ll}
2-x, & 0 \leq x \leq 4 \\
x+2, & -4<x<0
\end{array}, \quad \text { Period } 8\right.
$$

2. (a) Expand $f(x)=\cos x, 0<x<\pi$ in a Fourier sine series.
(b) How should $f(x)$ be defined at $x=0$ and $x=\pi$ so that the series will converge to $f(x)$ for $0 \leq x \leq \pi$?
3. (a) Prove that for $0 \leq x \leq \pi$

$$
x(\pi-x)=\frac{\pi^{2}}{6}-\left(\frac{\cos 2 x}{1^{2}}+\frac{\cos 4 x}{2^{2}}+\frac{\cos 6 x}{3^{2}}+\ldots\right)
$$

(b) Prove that for $0 \leq x \leq \pi$

$$
x(\pi-x)=\frac{8}{\pi}\left(\frac{\sin x}{1^{3}}+\frac{\sin 3 x}{3^{3}}+\frac{\sin 5 x}{5^{3}}+\ldots\right) .
$$

(c) Using item (a) show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. (Hint: Plug in a suitable value of x into the formula of item (a). Note that we already proved this identity in class using Fourier series of another function and Parseval's identity but here I want that you will not rely on what we did in class but on item (a) above only)
(d) Using item (a) and Parseval's identity show that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.
(e) (bonus 10 pts) Using item (b) and Parseval's identity show that $\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}$.
4. Solve the initial-boundary value problem for the heat equation

$$
u_{t}=4 u_{x x}, \quad 0<x<\pi, t>0
$$

with the following initial and boundary conditions
(a) $u(x, 0)=x(\pi-x), \quad u(0, t)=u(\pi, t)=0$;
(b) $u(x, 0)=x(\pi-x), \quad u_{x}(0, t)=u_{x}(\pi, t)=0$.
(Hint: In both items you can use first two items of Problem 3 above)
5. Solve the boundary value problem for Laplace equation

$$
u_{x x}+u_{y y}=0
$$

on the rectangle $0<x<\pi, 0<y<H$ with boundary conditions

$$
u(x, 0)=0, u(x, H)=\cos x, u(0, y)=u(\pi, y)=0
$$

