Homework Assignment 5 in MATH309-Spring 2013, ©Igor Zelenko

due February 25, 2013 . Show your work in all exercises.

Sections covered 3.3, 3.4, 3.5: Linearly dependence/independence, basis and dimension, change of basis

1. Determine whether the given vectors are linear independent in a given vector spaces. If not, pare down them to form a basis of their span (in other words, choose a subset of them that constitute a basis of their span) and find the dimension of this span (justify your answers):

(a)
$$\begin{pmatrix} 3\\2\\1 \end{pmatrix}$$
, $\begin{pmatrix} 1\\3\\2 \end{pmatrix}$, $\begin{pmatrix} 4\\5\\2 \end{pmatrix}$ in \mathbb{R}^3 ;
(b) $\begin{pmatrix} 3\\2\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\3\\2 \end{pmatrix}$, $\begin{pmatrix} 6\\11\\7 \end{pmatrix}$, $\begin{pmatrix} 1\\10\\3 \end{pmatrix}$ in \mathbb{R}^3 ;
(c) $\begin{pmatrix} 1\\3\\0\\5 \end{pmatrix}$, $\begin{pmatrix} 4\\0\\2\\1 \end{pmatrix}$, $\begin{pmatrix} 6\\6\\2\\1 \end{pmatrix}$, $\begin{pmatrix} -7\\3\\-4\\3 \end{pmatrix}$ in \mathbb{R}^4 ;
(d) $\begin{pmatrix} 3&-2\\4&1 \end{pmatrix}$, $\begin{pmatrix} -1&3\\2&5 \end{pmatrix}$, $\begin{pmatrix} 11&-12\\8&-7 \end{pmatrix}$, $\begin{pmatrix} 2&1\\6&4 \end{pmatrix}$ in $\mathbb{R}^{2\times 2}$;
(e) $x^2 + 3x - 4$, $2x^2 - 5$, $2x - 1$, 2 in P_3 ;
(f) e^{r_1x} , e^{r_2x} , e^{r_3x} in $C[-1,1]$, where r_1 , r_2 , and r_3 are pairwise distinct;
(g) 1, $\cos 2x$, $\cos^2 x$ in $C[-\pi,\pi]$.

- 2. Exercise 6, page 137.
- 3. Exercise 12, page 138.
- 4. Exercise 13, page 138
- 5. Find a basis of the given subspace S of a given vector space, if
 - (a) S consists of all vectors in \mathbb{R}^4 of the form $(a+3b+c, -b+2c, 3a+2b-2c, c-b)^T$;
 - (b) S is the subspace in P_3 consisting of all polynomials of the form $ax^2 + (2b + a)x + b + 2a$;
 - (c) S is a subspace of P_3 consisting of all polynomials p such that p(1) = 0;
 - (d) (bonus **10 points**) S is a subspace of P_3 consisting of all polynomials p such that p(0) = p(1) = 0
- 6. Let $\mathbf{v}_1 = (1, 2, 4)^T$, $\mathbf{v}_2 = (-1, 2, 0)^T$, $\mathbf{v}_3 = (2, 4, 0)^T$, $\mathbf{u}_1 = (0, 2, 1)^T$, $\mathbf{u}_2 = (-2, 1, 0)^T$, $\mathbf{u}_3 = (1, 1, 1)^T$
 - (a) Find the transition matrix from $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$
 - (b) If $\mathbf{x} = 3\mathbf{v}_1 4\mathbf{v}_2 + \mathbf{v}_3$, determine the coordinates of \mathbf{x} with respect to $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.