Homework Assignment 5 in MATH309-Spring 2013, © Igor Zelenko

 due February 25, 2013 . Show your work in all exercises.Sections covered 3.3, 3.4, 3.5: Linearly dependence/independence, basis and dimension, change of basis

1. Determine whether the given vectors are linear independent in a given vector spaces. If not, pare down them to form a basis of their span (in other words, choose a subset of them that constitute a basis of their span) and find the dimension of this span (justify your answers):
(a) $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{l}4 \\ 5 \\ 2\end{array}\right)$ in \mathbb{R}^{3};
(b) $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{c}6 \\ 11 \\ 7\end{array}\right),\left(\begin{array}{c}1 \\ 10 \\ 3\end{array}\right)$ in \mathbb{R}^{3};
(c) $\left(\begin{array}{l}1 \\ 3 \\ 0 \\ 5\end{array}\right),\left(\begin{array}{l}4 \\ 0 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}6 \\ 6 \\ 2 \\ 11\end{array}\right),\left(\begin{array}{c}-7 \\ 3 \\ -4 \\ 3\end{array}\right)$ in \mathbb{R}^{4};
(d) $\left(\begin{array}{cc}3 & -2 \\ 4 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 3 \\ 2 & 5\end{array}\right),\left(\begin{array}{cc}11 & -12 \\ 8 & -7\end{array}\right),\left(\begin{array}{ll}2 & 1 \\ 6 & 4\end{array}\right)$ in $\mathbb{R}^{2 \times 2}$;
(e) $x^{2}+3 x-4,2 x^{2}-5,2 x-1,2$ in P_{3};
(f) $e^{r_{1} x}, e^{r_{2} x}, e^{r_{3} x}$ in $C[-1,1]$, where r_{1}, r_{2}, and r_{3} are pairwise distinct;
(g) $1, \cos 2 x, \cos ^{2} x$ in $C[-\pi, \pi]$.
2. Exercise 6, page 137.
3. Exercise 12, page 138.
4. Exercise 13, page 138
5. Find a basis of the given subspace S of a given vector space, if
(a) S consists of all vectors in \mathbb{R}^{4} of the form $(a+3 b+c,-b+2 c, 3 a+2 b-2 c, c-b)^{T}$;
(b) S is the subspace in P_{3} consisting of all polynomials of the form $a x^{2}+(2 b+a) x+b+2 a$;
(c) S is a subspace of P_{3} consisting of all polynomials p such that $p(1)=0$;
(d) (bonus 10 points) S is a subspace of P_{3} consisting of all polynomials p such that $p(0)=$ $p(1)=0$
6. Let $\mathbf{v}_{1}=(1,2,4)^{T}, \mathbf{v}_{2}=(-1,2,0)^{T}, \mathbf{v}_{3}=(2,4,0)^{T}, \mathbf{u}_{1}=(0,2,1)^{T}, \mathbf{u}_{2}=(-2,1,0)^{T}, \mathbf{u}_{3}=$ $(1,1,1)^{T}$
(a) Find the transition matrix from $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ to $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$
(b) If $\mathbf{x}=3 \mathbf{v}_{1}-4 \mathbf{v}_{2}+\mathbf{v}_{3}$, determine the coordinates of \mathbf{x} with respect to $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$
