Homework Assignment 7 in MATH309-Spring 2013, ©Igor Zelenko

 due March 20, 2013 . Show your work in all exercises.
Sections covered 4.2, 4.3 Total of 130 points

1. Assume that a linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is given by

$$
L\left(\left(x_{1}, x_{2}, x_{3}\right)^{T}\right)=\left(2 x_{1}-3 x_{2}+x_{3},-4 x_{1}+x_{3}\right)^{T} .
$$

Find a matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^{3}$.
2. Find the standard matrix representation for each of the following linear operators (a linear operator means a linear transformation from a vector space to itself, the standard matrix representation of a linear operator in \mathbb{R}^{n} is the matrix representation with respect to the standard basis of \mathbb{R}^{n}):
(a) L is the linear operator that rotates each \mathbf{x} in \mathbb{R}^{2} by $\frac{\pi}{3}$ in the clockwise direction;
(b) L is the linear operator that first triples the length of \mathbf{x} and then reflects the obtained vector about the line $x_{2}=-x_{1}$;
(c) (bonus 10 points) L is the linear operator that first rotates each \mathbf{x} in \mathbb{R}^{2} by $\frac{\pi}{3}$ in the clockwise direction, then triples the length of the obtained vector and then reflects the resulting vector about the line $x_{2}=-x_{1}$. What matrix operation can you use in order to obtain the matrix required in this item from the matrices obtained in item (a) and (b)?
3. Let $\mathbf{b}_{1}=(1,-2,-4)^{T}, \quad \mathbf{b}_{1}=(3,2,-1)^{T}, \quad \mathbf{b}_{1}=(2,3,-2)^{T}$ and L be the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} defined by $L\left(\left(x_{1}, x_{2}\right)^{T}\right)=\left(x_{1}-3 x_{2}\right) \mathbf{b}_{1}+\left(2 x_{1}+4 x_{2}\right) \mathbf{b}_{2}-x_{1} \mathbf{b}_{3}$. Find the matrix A representing L with respect to the ordered basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$.
4. Let $E=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}, F=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ be as in exercise 18 page 189. Let

$$
L\left(\left(x_{1}, x_{2}, x_{3}\right)^{T}\right)=\left(-x_{1}+x_{2}-2 x_{3}, x_{1}-4 x_{3}\right)^{T}
$$

Find the matrix representing L with respect to the ordered bases E and F.
5. The linear transformation L defined by

$$
L(p(x))=\frac{1}{2} p^{\prime \prime}(x)+2 p(1)
$$

maps P_{4} to P_{2}. Find the matrix representation of L
(a) with respect to the ordered bases $\left\{1, x, x^{2}, x^{3}\right\}$ and $\{1, x\}$;
(b) (bonus 10 points) with respect to the ordered basis $\left\{x^{3}, x^{2}, x, 1\right\}$ and $\{1+x, 1-x\}$.
6. Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be as in exercise 1 on page 194 and L be the operator on \mathbb{R}^{2} given by

$$
L\left(\left(x_{1}, x_{2}\right)\right)=\left(5 x_{1}-3 x_{2},-2 x_{1}+4 x_{2}\right)^{T} .
$$

Find the matrix representing L with respect to to the basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
7. The linear operator on \mathbb{R}^{3} is given by

$$
L(\mathbf{x})=\left(15 x_{1}-11 x_{2}+5 x_{3}, 20 x_{1}-15 x_{2}+8 x_{3}, 8 x_{1}-7 x_{2}+6 x_{3}\right)^{T} .
$$

Find the matrix of this operator in the basis $\left\{(2,3,1)^{T},(3,4,1)^{T},(1,2,3)^{T}\right\}$.
8. (bonus 10 points) Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be the ordered bases of \mathbb{R}^{2}, where $\mathbf{u}_{1}=(-2,1)^{T}, \mathbf{u}_{2}=$ $(0,1)^{T}, \mathbf{v}_{1}=(1,-1)^{T}, \mathbf{v}_{2}=(1,1)^{T}$. Assume that a linear operator L is represented by the matrix $B=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ with respect to the basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Find the matrix A representing L with respect to the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

