Homework Assignment 8 in MATH309-Spring 2013, ©Igor Zelenko

due March 27, 2013. Show your work in all exercises (you may earn 30 points of bonus)

Sections covered are 6.1, 6.2, and 6.3: Eigenvalues of matrices/linear operators, eigenvectors and eigenspaces, relations to the determinant and the trace;algebraic and geometric multiplicity of an eigenvalue, diagonalizable and defective matrices/operators; the exponential of the matrix and its relation to the solution of initial value problems for systems of ordinary differential equations with constant coefficients
(1) In items (a)-(e) below I give a matrix A and a vector $\mathbf{x}_{0}{ }^{1}$ together (maybe) with some additional information about the characteristic polynomial or some of eigenvalues of A. In each item answer the following questions:
(i) Find all eigenvalues (that are not given);
(ii) Find the eigenspaces corresponding to each eigenvalue;
(iii) Determine weather the matrix A is diagonizable or defective (i.e. non-diagonizable);
(iv) In the case when the matrix A is diagonizable find the diagonal matrix D which is similar to A and a matrix X which diagonalizes A (in other words, factor A into the product $X D X^{-1}$, where D is diagonal by writing explicitly what is D and X);
(v) In all cases find A^{3};
(vi) In all cases find $e^{t A}$
(vii) Find the solution of the initial value problem $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}(0)=\mathbf{x}_{0}$.
(a) $A=\left(\begin{array}{cc}-7 & 6 \\ -15 & 12\end{array}\right), \quad x_{0}=(1,-1)^{T}$;
(b) $A=\left(\begin{array}{ccc}-13 & 40 & -10 \\ -9 & 27 & -7 \\ -17 & 50 & -14\end{array}\right), \quad \mathbf{x}_{0}=(3,-4,-2)^{T}$, and it is known that -3 and 1 are eigenvalues of A (Hint: you can answer all questions for A without calculating its characteristic polynomial);
(c) $A=\left(\begin{array}{ccc}7 & -27 & -42 \\ -2 & 10 & 14 \\ 2 & -9 & -13\end{array}\right), \quad \mathbf{x}_{0}=(1,-1,1)^{T}$, and it is known that $-\lambda^{3}+4 \lambda^{2}-5 \lambda+2$ is a characteristic polynomial of A;
(d) $A=\left(\begin{array}{cccc}-2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right), \quad \mathbf{x}_{0}=(2,1,0,-2)^{T}$;
(e) $A=\left(\begin{array}{ccc}-1 & 1 & 1 \\ -3 & 12 & 10 \\ 4 & -17 & -14\end{array}\right), \quad \mathbf{x}_{0}=(-1,2,3)$ (for this matrix items (v)-(vii) are bonus 15 points in total).
(2) For the matrix A from the item (a) of the previous problem find a matrix B such that $B^{2}=A$;
(3) Solve any 3 out of the following 4 problems from page 294 of the textbook: Exercise $3,4,8,9$; if you solve all 4 of them you get bonus 5 points;
(4) Exercise 12, page 294;
(5) Let A be a 2×2 matrix. If $\operatorname{tr} A=1$ and $\operatorname{det}(A)=-20$, what are the eigenvalues of A ? Is A diagonizable?
(6) Solve any 3 out of the following 4 problems: Exercise 18, 24, 26, 29 page 295; if you solve all 4 of them you get bonus 5 points;
(7) Let A be a 5×5 matrix.
(a) If λ is an eigenvalue of (algebraic) multiplicity 4 and $A-\lambda I$ has rank 1 , is A defective? Explain your answer;
(b) If λ is an eigenvalue of (algebraic) multiplicity 3 and $A-\lambda I$ has rank 3 , is A defective? Explain your answer;
(c) bonus 5 points Is it possible that λ is an eigenvalue of (algebraic) multiplicity 3 such that $A-\lambda I$ has rank 1? Explain your answer.

[^0]
[^0]: ${ }^{1}$ the vector \mathbf{x}_{0} is used in item (vi) only

