Homework Assignment 9 in MATH309-Spring 2013, ©Igor Zelenko

 due April 8, 2013 . Show your work in all exercisesSections covered are 5.1, 5.4.

1. Let \mathbf{x} and \mathbf{y} be linearly independent vectors in \mathbf{R}^{n}. If $\|x\|=3$ and $\|y\|=4$, what, if anything, can we conclude about the possible values of $\left|\mathbf{x}^{T} \mathbf{y}\right|$?
2. Let $A=(1,-2,-3,4)$ be a point in \mathbb{R}^{4} and $\mathbf{y}=(-2,3,-4,-2)^{T}$. Let $L=\operatorname{Span}\{\mathbf{y}\}$. Among all points on L find the point closest to A and find the distance from the point A to the line L.
3. Find the distance from the point $(3,-1,4,-2)$ to the hyperplane

$$
2\left(x_{1}-2\right)+3\left(x_{2}+1\right)+4\left(x_{3}-5\right)+5\left(x_{4}+4\right)=0
$$

in \mathbb{R}^{4}.
4. Exercise 18, page 213.
5. In items (a)-(f) below I give two vectors \mathbf{y} and \mathbf{z} in a given vector space V with a given inner product. In each item answer the following question:
(i) Find the inner product $\langle\mathbf{y}, \mathbf{z}\rangle$;
(ii) Find the distance between \mathbf{y} and \mathbf{z};
(iii) Find the angle between the vectors \mathbf{y} and \mathbf{z} (with respect to the given inner product in V)
(iv) Find the vector projection of \mathbf{y} onto \mathbf{z}.
(a) $\mathbf{y}=(1,3,1,1)^{T}, \mathbf{z}=(1,-3,1,1)^{T}$ in $V=\mathbb{R}^{4}$ with the standard inner product.
(b) The vectors \mathbf{y} and \mathbf{z} are as in the previous item but the inner product in \mathbb{R}^{4} is given by the formula (1) of page 232 with the weight vector $\mathbf{w}=(3,1,3,3)$;
(c) $\mathbf{y}=\left(\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right), \mathbf{z}=\left(\begin{array}{cc}1 & 1 \\ -3 & 1\end{array}\right)$, where $V=\mathbb{R}^{2 \times 2}$, the space of 2×2-matrices, with the inner product given by formula (2), page 232;
(d) $\mathbf{y}=e^{-2 x}, \mathbf{z}=e^{2 x}$ in $V=C[0,1]$ with the inner product defined by formula (3) of page 232;
(e) $\mathbf{y}=x^{2}, \mathbf{z}=x^{3}$ in $V=C[-1,1]$ with the inner product defined by formula (3) of page 232;
(f) $\mathbf{y}=x^{2}, \mathbf{z}=x^{3}$ in $V=P_{5}$ (the space of polynomials of degree <5) with the inner product defined by formula (5) of page 233, where $x_{i}=\frac{i-3}{2}$ for $i=1, \ldots 5$.
6. Solve one of the two exercises 18 or 26 of page 240 . If you solve both you may get $\mathbf{8}$ points of bonus.

