Homework Assignment 9 in MATH309-Spring 2013, ©Igor Zelenko

due April 8, 2013 . Show your work in all exercises

Sections covered are 5.1, 5.4.

- 1. Let **x** and **y** be linearly independent vectors in \mathbf{R}^n . If ||x|| = 3 and ||y|| = 4, what, if anything, can we conclude about the possible values of $|\mathbf{x}^T \mathbf{y}|$?
- 2. Let A = (1, -2, -3, 4) be a point in \mathbb{R}^4 and $\mathbf{y} = (-2, 3, -4, -2)^T$. Let $L = Span\{\mathbf{y}\}$. Among all points on L find the point closest to A and find the distance from the point A to the line L.
- 3. Find the distance from the point (3, -1, 4, -2) to the hyperplane

$$2(x_1 - 2) + 3(x_2 + 1) + 4(x_3 - 5) + 5(x_4 + 4) = 0$$

in \mathbb{R}^4 .

- 4. Exercise 18, page 213.
- 5. In items (a)-(f) below I give two vectors \mathbf{y} and \mathbf{z} in a given vector space V with a given inner product. In each item answer the following question:
 - (i) Find the inner product $\langle \mathbf{y}, \mathbf{z} \rangle$;
 - (ii) Find the distance between \mathbf{y} and \mathbf{z} ;
 - (iii) Find the angle between the vectors \mathbf{y} and \mathbf{z} (with respect to the given inner product in V)
 - (iv) Find the vector projection of **y** onto **z**.
 - (a) $\mathbf{y} = (1,3,1,1)^T$, $\mathbf{z} = (1,-3,1,1)^T$ in $V = \mathbb{R}^4$ with the standard inner product.
 - (b) The vectors \mathbf{y} and \mathbf{z} are as in the previous item but the inner product in \mathbb{R}^4 is given by the formula (1) of page 232 with the weight vector $\mathbf{w} = (3, 1, 3, 3)$;
 - (c) $\mathbf{y} = \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix}$, $\mathbf{z} = \begin{pmatrix} 1 & 1 \\ -3 & 1 \end{pmatrix}$, where $V = \mathbb{R}^{2 \times 2}$, the space of 2×2 -matrices, with the inner product given by formula (2), page 232;
 - (d) $\mathbf{y} = e^{-2x}$, $\mathbf{z} = e^{2x}$ in V = C[0, 1] with the inner product defined by formula (3) of page 232;
 - (e) $\mathbf{y} = x^2$, $\mathbf{z} = x^3$ in V = C[-1, 1] with the inner product defined by formula (3) of page 232;
 - (f) $\mathbf{y} = x^2$, $\mathbf{z} = x^3$ in $V = P_5$ (the space of polynomials of degree < 5) with the inner product defined by formula (5) of page 233, where $x_i = \frac{i-3}{2}$ for i = 1, ... 5.
- 6. Solve one of the two exercises 18 or 26 of page 240. If you solve both you may get 8 points of bonus.