Homework Assignment 11 in Differential Equations, MATH308-SUMMER

 due June 27, 2012Topics covered : definition and properties of Laplace transform; some properties of laplace transform: translation in s property, Laplace transform of the derivative, and derivative of Laplace transform; how , using Laplace transform, to pass from initial value problems for a differential equation to an algebraic equation (corresponds to sections 6.1 and beginning of section 6.2)

1. Recall that the hyperbolic cosine $\cosh t$ and hyperbolic sine $\sinh t$ are defined as follows:

$$
\cosh t=\frac{e^{t}+e^{-t}}{2}, \quad \sinh t=\frac{e^{t}-e^{-t}}{2}
$$

Find the Laplace transform of the given function (below a and b are real constants):
(a) $f(t)=\cosh b t$;
(b) $f(t)=e^{a t} \sinh b t$.
2. Solve for $Y(s)$, the Laplace transform of the solution $y(t)$ to the given initial value problem (you do not need to find the solution $y(t)$ itself here):
(a) $y^{\prime \prime}-5 y^{\prime}+4 y=e^{-3 t} \sin 4 t, \quad y(0)=0, y^{\prime}(0)=-1$;
(b) $y^{\prime \prime}+4 y^{\prime}+5 y=t^{4}, \quad y(0)=1, y^{\prime}(0)=0$

