Homework Assignment 12 in Differential Equations, MATH308-SPRING 2015

due April 1, 2015

1. Let $A=\left(\begin{array}{cc}5 & -3 \\ -2 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}4 & -6 \\ -2 & 3\end{array}\right)$. Compute $A B-B A$.
2. Transform the given equation into a system of first order differential equations:
(a) $u^{\prime \prime}-5 u^{\prime}+8 u=\tan t$
(b) $y^{(3)}+4 y^{\prime}-5 t y=0$
3. Express the given system of linear differential equations in matrix form:
(a) $\left\{\begin{aligned} x_{1}^{\prime} & =3 x_{1}+4 x_{3} \\ x_{2}^{\prime} & =-x_{1}+2 x_{2}-3 x_{3} \\ x_{3}^{\prime} & =x_{1}-x_{3}\end{aligned}\right.$
(b) $\left\{\begin{array}{l}x^{\prime}=\cos t x+t^{2} y-\frac{t^{2}}{2} \\ y^{\prime}=-t^{2} x-\sin t y+\frac{t^{3}}{3}\end{array}\right.$
4. Determine whether the following solutions of the the system $x^{\prime}(t)=A x(t)$ form a fundamental set of its solutions. If they do, give a general solution of the system.
(a) $x^{1}=e^{-3 t}\binom{-2}{10}, \quad x^{2}=e^{-3 t}\binom{3}{-15}$
(b) $x^{1}=\left(\begin{array}{c}e^{-2 t} \\ -2 e^{-2 t} \\ 3 e^{-2 t}\end{array}\right), \quad x^{2}=\left(\begin{array}{c}-2 \cos 3 t \\ -3 \sin 3 t \\ \sin 3 t\end{array}\right), \quad x^{3}=\left(\begin{array}{c}-2 \sin 3 t \\ 3 \cos 3 t \\ -\cos 3 t\end{array}\right)$
