Homework Assignment 15 in Differential Equations, MATH308-SPRING 2015

due April 22, 2015 Sections covered: end of 7.5 (the case when there are repeated eigenvalues and a basis of eigenvectors)\& 7.8 (when there are repeated eigenvalues but no basis of eigenvectors)

1. Find a fundamental matrix and the general solution of the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=5 x_{1}-2 x_{2}+3 x_{3} \\
x_{2}^{\prime}=-2 x_{1}+2 x_{2}+6 x_{3} \\
x_{3}^{\prime}=x_{1}+2 x_{2}+3 x_{3}
\end{array}\right.
$$

2. Given the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-13 x_{1}+25 x_{2} \tag{1}\\
x_{2}^{\prime}=-9 x_{1}+17 x_{2}
\end{array}\right.
$$

(a) Find the general solution of the system (1).
(b) If $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is a solution of (1), what is the limit of $x(t)$ as $t \rightarrow-\infty$. Does this limit depend on initial conditions?
(c) Find the solution of the system (1) satisfying the initial conditions: $x_{1}(0)=-4, \quad x_{2}(0)=3$.
3. Find a fundamental matrix and the general solution of the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2}+2 x_{3} \\
x_{2}^{\prime}=3 x_{1}+2 x_{2}+2 x_{3} \\
x_{3}^{\prime}=-2 x_{1}-2 x_{2}-3 x_{3}
\end{array}\right.
$$

