Homework Assignment 16 in Differential Equations, MATH308-SPRING 2015

due May 1, 2015
Sections covered: 7.9 (the method of variation of parametes for nonhomogeneous systems) and 7.8 (the case of repeated eigenvalues of (algebraic) multiplicity 3 as a bonus)

1. Use the method of variation of parameters to solve the following initial value problem:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=3 x_{1}-x_{2}+4 e^{2 t} \\
x_{2}^{\prime}=-x_{1}+3 x_{2}+4 e^{4 t} \\
x_{1}(0)=1, x_{2}(0)=1
\end{array}\right.
$$

2. Use the method of variation of parameters to find the general solution of the following system:

$$
X^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) X+\binom{\cos t}{\sin t} e^{t}
$$

3. (bonus 80 points) Find the general solution of the following systems:
(a)

$$
X^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 2 & -1 \\
0 & 1 & 0
\end{array}\right) X
$$

(b)

$$
\left\{\begin{aligned}
x_{1}^{\prime} & =-9 x_{1}+x_{2}-2 x_{3} \\
x_{2}^{\prime} & =x_{1}-9 x_{2}+2 x_{3} \\
x_{3}^{\prime} & =x_{1}-x_{2}-6 x_{3}
\end{aligned}\right.
$$

if it is known that $\lambda=-8$ is an eigenvalue of algebraic multiplicity 3 .

