due January 30, 2015 at the beginning of class

Topics covered : direction field and qualitative analysis of autonomous equations on the line (corresponds to sections 1.1 and 2.5).

1. Given the differential equation:

$$
\begin{equation*}
y^{\prime}=3-2 y \tag{1}
\end{equation*}
$$

(a) Find all equilibrium solutions.
(b) Sketch a direction field.
(c) Given any initial condition $y(0)=y_{0}$ describe the behavior of the corresponding solution when $t \rightarrow-\infty$ and the behavior of the corresponding solutions when $t \rightarrow+\infty$.
(d) Solve the equation (1) analytically for each initial value $y(0)=y_{0}$ and justify your answer in the item (c) analyzing the obtained solution.
2. Given the differential equation:

$$
\begin{equation*}
y^{\prime}=y^{2}-3 y+2 \tag{2}
\end{equation*}
$$

(a) Find all equilibrium points.
(b) Sketch a direction field.
(c) Based on the sketch of the direction field from the item (b) answer the following questions:
i. Let $y(t)$ be the solution of equation (2) satisfying the initial condition $y(0)=\frac{4}{3}$. Find the limit of $y(t)$ when $t \rightarrow+\infty$ and the limit of $y(t)$ when $t \rightarrow-\infty$ (for this you do not need to find $y(t)$ explicitly).
ii. Find all y_{0} such that the solution of the equation (2) with the initial condition $y(0)=y_{0}$ has the same limit at $+\infty$ as the solution from the item (c)i.
iii. Let $y(t)$ be the solution of equation (2) with $y(0)=3$. Decide wether $y(t)$ is monotonically decreasing or increasing and find to what value it approaches when t increases (the value might be infinite).
(d) (bonus - 20 points) Find the solution of the equation (2) with $y(0)=3$ explicitly. Determine the interval in which this solution is defined.

