due September 12, 2016 at the beginning of class

Topics covered : method of integrating factor (sections 2.1); direction field and qualitative analysis of autonomous equations on the line (corresponds to sections 1.1 and 2.5) and a bonus question on equation that can be reduced to separable by an appropriate substitution.

1. (a) Solve the initial value problem

$$
y^{\prime}=-y \cot t+\cos t, \quad y\left(\frac{\pi}{2}\right)=4
$$

(b) Find the general solution of the differential equation

$$
\left(1+t^{2}\right) y^{\prime}+t y=\left(1+t^{2}\right)^{5 / 2}
$$

(Hint: Divide both sides of the equation to $1+t^{2}$.)
2. Show that every solution of the equation $y^{\prime}(t)+a y=b e^{-c t}$, where a and c are positive constants and b is any real number, approaches zero as t approaches $+\infty$.
3. Given the differential equation:

$$
\begin{equation*}
y^{\prime}=y^{2}-2 y-3 \tag{1}
\end{equation*}
$$

(a) Find all equilibrium points.
(b) Sketch a direction field.
(c) Based on the sketch of the direction field from the item (b) answer the following questions:
i. Let $y(t)$ be the solution of equation (1) satisfying the initial condition $y(0)=2$. Find the limit of $y(t)$ when $t \rightarrow+\infty$ and the limit of $y(t)$ when $t \rightarrow-\infty$ (for this you do not need to find $y(t)$ explicitly).
ii. Find all y_{0} such that the solution of the equation (1) with the initial condition $y(0)=y_{0}$ has the same limit at $-\infty$ as the solution from the item (c)i.
iii. Let $y(t)$ be the solution of equation (1) with $y(0)=4$. Decide wether $y(t)$ is monotonically decreasing or increasing and find to what value it approaches when t increases (the value might be infinite).
(d) Find the solution of the equation (1) with $y(0)=4$ explicitly. Determine the interval in which this solution is defined.
4. (bonus - 30 points) Before attempting this problem review the lecture notes from August 31, when we discussed the equation of the type $y^{\prime}=f\left(\frac{y}{x}\right)$ (so-called, homogeneous equations) and $y^{\prime}=f(a x+b y+c)$: the main idea here is to make an appropriate substitution to obtain a separable equation: $u(x)=\frac{y(x)}{x}$ in the first case and $u(x)=a x+b y(x)+c$ in the second case. Then find the general solution of the following equations:
(a) $y^{\prime}=\frac{y-x}{x+y}$;
(b) $y^{\prime}=(3 x+2 y-1)^{2}$.

