Homework Assignment #2

FAll 2016 - MATH308

due September 12, 2016 at the beginning of class

Topics covered : method of integrating factor (sections 2.1); direction field and qualitative analysis of autonomous equations on the line (corresponds to sections 1.1 and 2.5) and a bonus question on equation that can be reduced to separable by an appropriate substitution.

1. (a) Solve the initial value problem

$$y' = -y \cot t + \cos t, \quad y(\frac{\pi}{2}) = 4.$$

(b) Find the general solution of the differential equation

$$(1+t^2)y' + ty = (1+t^2)^{5/2}.$$

(*Hint*: Divide both sides of the equation to $1 + t^2$.)

- 2. Show that every solution of the equation $y'(t) + ay = be^{-ct}$, where a and c are positive constants and b is any real number, approaches zero as t approaches $+\infty$.
- 3. Given the differential equation:

$$y' = y^2 - 2y - 3 \tag{1}$$

- (a) Find all equilibrium points.
- (b) Sketch a direction field.
- (c) Based on the sketch of the direction field from the item (b) answer the following questions:
 - i. Let y(t) be the solution of equation (1) satisfying the initial condition y(0) = 2. Find the limit of y(t) when $t \to +\infty$ and the limit of y(t) when $t \to -\infty$ (for this you do not need to find y(t) explicitly).
 - ii. Find all y_0 such that the solution of the equation (1) with the initial condition $y(0) = y_0$ has the same limit at $-\infty$ as the solution from the item (c)i.
 - iii. Let y(t) be the solution of equation (1) with y(0) = 4. Decide wether y(t) is monotonically decreasing or increasing and find to what value it approaches when t increases (the value might be infinite).
- (d) Find the solution of the equation (1) with y(0) = 4 explicitly. Determine the interval in which this solution is defined.
- 4. (bonus 30 points) Before attempting this problem review the lecture notes from August 31, when we discussed the equation of the type $y' = f(\frac{y}{x})$ (so-called, homogeneous equations) and y' = f(ax + by + c): the main idea here is to make an appropriate substitution to obtain a separable equation: $u(x) = \frac{y(x)}{x}$ in the first case and u(x) = ax + by(x) + c in the second case. Then find the general solution of the following equations:

(a)
$$y' = \frac{y-x}{x+y};$$

(b) $y' = (3x+2y-1)^2.$